# Convert gill / hour to cubic meter / hour

Learn how to convert 1 gill / hour to cubic meter / hour step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(\dfrac{gill}{hour}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{cubic \text{ } meter}{hour}\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(\dfrac{cubic \text{ } meter}{second}\right)$$
$$\text{Left side: 1.0 } \left(\dfrac{gill}{hour}\right) = {\color{rgb(89,182,91)} \dfrac{1.420653125 \times 10^{-4}}{3.6 \times 10^{3}}\left(\dfrac{cubic \text{ } meter}{second}\right)} = {\color{rgb(89,182,91)} \dfrac{1.420653125 \times 10^{-4}}{3.6 \times 10^{3}}\left(\dfrac{m^{3}}{s}\right)}$$
$$\text{Right side: 1.0 } \left(\dfrac{cubic \text{ } meter}{hour}\right) = {\color{rgb(125,164,120)} \dfrac{1.0}{3.6 \times 10^{3}}\left(\dfrac{cubic \text{ } meter}{second}\right)} = {\color{rgb(125,164,120)} \dfrac{1.0}{3.6 \times 10^{3}}\left(\dfrac{m^{3}}{s}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(\dfrac{gill}{hour}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{cubic \text{ } meter}{hour}\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{1.420653125 \times 10^{-4}}{3.6 \times 10^{3}}} \times {\color{rgb(89,182,91)} \left(\dfrac{cubic \text{ } meter}{second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{1.0}{3.6 \times 10^{3}}}} \times {\color{rgb(125,164,120)} \left(\dfrac{cubic \text{ } meter}{second}\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{1.420653125 \times 10^{-4}}{3.6 \times 10^{3}}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m^{3}}{s}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{1.0}{3.6 \times 10^{3}}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m^{3}}{s}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{1.420653125 \times 10^{-4}}{3.6 \times 10^{3}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m^{3}}{s}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{1.0}{3.6 \times 10^{3}}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m^{3}}{s}\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{1.420653125 \times 10^{-4}}{3.6 \times 10^{3}} = {\color{rgb(20,165,174)} x} \times \dfrac{1.0}{3.6 \times 10^{3}}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$\dfrac{1.420653125 \times 10^{-4}}{{\color{rgb(255,204,153)} \cancel{3.6}} \times {\color{rgb(99,194,222)} \cancel{10^{3}}}} = {\color{rgb(20,165,174)} x} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{3.6}} \times {\color{rgb(99,194,222)} \cancel{10^{3}}}}$$
$$\text{Simplify}$$
$$1.420653125 \times 10^{-4} = {\color{rgb(20,165,174)} x}$$
Switch sides
$${\color{rgb(20,165,174)} x} = 1.420653125 \times 10^{-4}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0001420653\approx1.4207 \times 10^{-4}$$
$$\text{Conversion Equation}$$
$$1.0\left(\dfrac{gill}{hour}\right)\approx{\color{rgb(20,165,174)} 1.4207 \times 10^{-4}}\left(\dfrac{cubic \text{ } meter}{hour}\right)$$