Convert (gram • meter) / square second to kip
Learn how to convert
1
(gram • meter) / square second to
kip
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(\dfrac{gram \times meter}{square \text{ } second}\right)={\color{rgb(20,165,174)} x}\left(kip\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(newton\right)\)
\(\text{Left side: 1.0 } \left(\dfrac{gram \times meter}{square \text{ } second}\right) = {\color{rgb(89,182,91)} 10^{-3}\left(newton\right)} = {\color{rgb(89,182,91)} 10^{-3}\left(N\right)}\)
\(\text{Right side: 1.0 } \left(kip\right) = {\color{rgb(125,164,120)} 4448.2216152605\left(newton\right)} = {\color{rgb(125,164,120)} 4448.2216152605\left(N\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(\dfrac{gram \times meter}{square \text{ } second}\right)={\color{rgb(20,165,174)} x}\left(kip\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 10^{-3}} \times {\color{rgb(89,182,91)} \left(newton\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 4448.2216152605}} \times {\color{rgb(125,164,120)} \left(newton\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 10^{-3}} \cdot {\color{rgb(89,182,91)} \left(N\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 4448.2216152605} \cdot {\color{rgb(125,164,120)} \left(N\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 10^{-3}} \cdot {\color{rgb(89,182,91)} \cancel{\left(N\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 4448.2216152605} \times {\color{rgb(125,164,120)} \cancel{\left(N\right)}}\)
\(\text{Conversion Equation}\)
\(10^{-3} = {\color{rgb(20,165,174)} x} \times 4448.2216152605\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 4448.2216152605 = 10^{-3}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{4448.2216152605}\right)\)
\({\color{rgb(20,165,174)} x} \times 4448.2216152605 \times \dfrac{1.0}{4448.2216152605} = 10^{-3} \times \dfrac{1.0}{4448.2216152605}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{4448.2216152605}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{4448.2216152605}}} = 10^{-3} \times \dfrac{1.0}{4448.2216152605}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{-3}}{4448.2216152605}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.0000002248\approx2.2481 \times 10^{-7}\)
\(\text{Conversion Equation}\)
\(1.0\left(\dfrac{gram \times meter}{square \text{ } second}\right)\approx{\color{rgb(20,165,174)} 2.2481 \times 10^{-7}}\left(kip\right)\)