# Convert bag to tonne

Learn how to convert 1 bag to tonne step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(bag\right)={\color{rgb(20,165,174)} x}\left(tonne\right)$$
Define the base values of the selected units in relation to the SI unit $$\left({\color{rgb(230,179,255)} kilo}gram\right)$$
$$\text{Left side: 1.0 } \left(bag\right) = {\color{rgb(89,182,91)} 60.0\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} 60.0\left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Right side: 1.0 } \left(tonne\right) = {\color{rgb(125,164,120)} 10^{3}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} 10^{3}\left({\color{rgb(230,179,255)} k}g\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(bag\right)={\color{rgb(20,165,174)} x}\left(tonne\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 60.0} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 10^{3}}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 60.0} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 10^{3}} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 60.0} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 10^{3}} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}$$
$$\text{Conversion Equation}$$
$$60.0 = {\color{rgb(20,165,174)} x} \times 10^{3}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 10^{3} = 60.0$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{10^{3}}\right)$$
$${\color{rgb(20,165,174)} x} \times 10^{3} \times \dfrac{1.0}{10^{3}} = 60.0 \times \dfrac{1.0}{10^{3}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{10^{3}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{10^{3}}}} = 60.0 \times \dfrac{1.0}{10^{3}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{60.0}{10^{3}}$$
Rewrite equation
$$\dfrac{1.0}{10^{3}}\text{ can be rewritten to }10^{-3}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = 10^{-3} \times 60.0$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 6 \times 10^{-2}$$
$$\text{Conversion Equation}$$
$$1.0\left(bag\right) = {\color{rgb(20,165,174)} 6 \times 10^{-2}}\left(tonne\right)$$