# Convert caballeria to bunder

Learn how to convert 1 caballeria to bunder step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(caballeria\right)={\color{rgb(20,165,174)} x}\left(bunder\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(square \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(caballeria\right) = {\color{rgb(89,182,91)} 134202.0\left(square \text{ } meter\right)} = {\color{rgb(89,182,91)} 134202.0\left(m^{2}\right)}$$
$$\text{Right side: 1.0 } \left(bunder\right) = {\color{rgb(125,164,120)} 10^{4}\left(square \text{ } meter\right)} = {\color{rgb(125,164,120)} 10^{4}\left(m^{2}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(caballeria\right)={\color{rgb(20,165,174)} x}\left(bunder\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 134202.0} \times {\color{rgb(89,182,91)} \left(square \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 10^{4}}} \times {\color{rgb(125,164,120)} \left(square \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 134202.0} \cdot {\color{rgb(89,182,91)} \left(m^{2}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 10^{4}} \cdot {\color{rgb(125,164,120)} \left(m^{2}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 134202.0} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{2}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 10^{4}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{2}\right)}}$$
$$\text{Conversion Equation}$$
$$134202.0 = {\color{rgb(20,165,174)} x} \times 10^{4}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 10^{4} = 134202.0$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{10^{4}}\right)$$
$${\color{rgb(20,165,174)} x} \times 10^{4} \times \dfrac{1.0}{10^{4}} = 134202.0 \times \dfrac{1.0}{10^{4}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{10^{4}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{10^{4}}}} = 134202.0 \times \dfrac{1.0}{10^{4}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{134202.0}{10^{4}}$$
Rewrite equation
$$\dfrac{1.0}{10^{4}}\text{ can be rewritten to }10^{-4}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = 10^{-4} \times 134202.0$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 13.4202$$
$$\text{Conversion Equation}$$
$$1.0\left(caballeria\right) = {\color{rgb(20,165,174)} 13.4202}\left(bunder\right)$$