# Convert chain to rin(厘)

Learn how to convert 1 chain to rin(厘) step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(chain\right)={\color{rgb(20,165,174)} x}\left(rin(厘)\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(meter\right)$$
$$\text{Left side: 1.0 } \left(chain\right) = {\color{rgb(89,182,91)} 30.48\left(meter\right)} = {\color{rgb(89,182,91)} 30.48\left(m\right)}$$
$$\text{Right side: 1.0 } \left(rin(厘)\right) = {\color{rgb(125,164,120)} \dfrac{1.0}{3.3 \times 10^{3}}\left(meter\right)} = {\color{rgb(125,164,120)} \dfrac{1.0}{3.3 \times 10^{3}}\left(m\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(chain\right)={\color{rgb(20,165,174)} x}\left(rin(厘)\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 30.48} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{1.0}{3.3 \times 10^{3}}}} \times {\color{rgb(125,164,120)} \left(meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 30.48} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{1.0}{3.3 \times 10^{3}}} \cdot {\color{rgb(125,164,120)} \left(m\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 30.48} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{1.0}{3.3 \times 10^{3}}} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}$$
$$\text{Conversion Equation}$$
$$30.48 = {\color{rgb(20,165,174)} x} \times \dfrac{1.0}{3.3 \times 10^{3}}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times \dfrac{1.0}{3.3 \times 10^{3}} = 30.48$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{3.3 \times 10^{3}}{1.0}\right)$$
$${\color{rgb(20,165,174)} x} \times \dfrac{1.0}{3.3 \times 10^{3}} \times \dfrac{3.3 \times 10^{3}}{1.0} = 30.48 \times \dfrac{3.3 \times 10^{3}}{1.0}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}} \times {\color{rgb(99,194,222)} \cancel{3.3}} \times {\color{rgb(166,218,227)} \cancel{10^{3}}}}{{\color{rgb(99,194,222)} \cancel{3.3}} \times {\color{rgb(166,218,227)} \cancel{10^{3}}} \times {\color{rgb(255,204,153)} \cancel{1.0}}} = 30.48 \times \dfrac{3.3 \times 10^{3}}{1.0}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = 30.48 \times 3.3 \times 10^{3}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 100584\approx1.0058 \times 10^{5}$$
$$\text{Conversion Equation}$$
$$1.0\left(chain\right)\approx{\color{rgb(20,165,174)} 1.0058 \times 10^{5}}\left(rin(厘)\right)$$