# Convert chalder to point

Learn how to convert 1 chalder to point step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(chalder\right)={\color{rgb(20,165,174)} x}\left(point\right)$$
Define the base values of the selected units in relation to the SI unit $$\left({\color{rgb(230,179,255)} kilo}gram\right)$$
$$\text{Left side: 1.0 } \left(chalder\right) = {\color{rgb(89,182,91)} 2692.52\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} 2692.52\left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Right side: 1.0 } \left(point\right) = {\color{rgb(125,164,120)} 2.0 \times 10^{-6}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} 2.0 \times 10^{-6}\left({\color{rgb(230,179,255)} k}g\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(chalder\right)={\color{rgb(20,165,174)} x}\left(point\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 2692.52} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 2.0 \times 10^{-6}}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 2692.52} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 2.0 \times 10^{-6}} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 2692.52} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 2.0 \times 10^{-6}} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}$$
$$\text{Conversion Equation}$$
$$2692.52 = {\color{rgb(20,165,174)} x} \times 2.0 \times 10^{-6}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 2.0 \times 10^{-6} = 2692.52$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{2.0 \times 10^{-6}}\right)$$
$${\color{rgb(20,165,174)} x} \times 2.0 \times 10^{-6} \times \dfrac{1.0}{2.0 \times 10^{-6}} = 2692.52 \times \dfrac{1.0}{2.0 \times 10^{-6}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{2.0}} \times {\color{rgb(99,194,222)} \cancel{10^{-6}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{2.0}} \times {\color{rgb(99,194,222)} \cancel{10^{-6}}}} = 2692.52 \times \dfrac{1.0}{2.0 \times 10^{-6}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{2692.52}{2.0 \times 10^{-6}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-6}}\text{ can be rewritten to }10^{6}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{6} \times 2692.52}{2.0}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 1346260000\approx1.3463 \times 10^{9}$$
$$\text{Conversion Equation}$$
$$1.0\left(chalder\right)\approx{\color{rgb(20,165,174)} 1.3463 \times 10^{9}}\left(point\right)$$