Convert cho(町) to line
Learn how to convert
1
cho(町) to
line
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(cho(町)\right)={\color{rgb(20,165,174)} x}\left(line\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(meter\right)\)
\(\text{Left side: 1.0 } \left(cho(町)\right) = {\color{rgb(89,182,91)} \dfrac{1.2 \times 10^{3}}{11.0}\left(meter\right)} = {\color{rgb(89,182,91)} \dfrac{1.2 \times 10^{3}}{11.0}\left(m\right)}\)
\(\text{Right side: 1.0 } \left(line\right) = {\color{rgb(125,164,120)} \dfrac{2.11455}{999.0}\left(meter\right)} = {\color{rgb(125,164,120)} \dfrac{2.11455}{999.0}\left(m\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(cho(町)\right)={\color{rgb(20,165,174)} x}\left(line\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{1.2 \times 10^{3}}{11.0}} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{2.11455}{999.0}}} \times {\color{rgb(125,164,120)} \left(meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} \dfrac{1.2 \times 10^{3}}{11.0}} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{2.11455}{999.0}} \cdot {\color{rgb(125,164,120)} \left(m\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{1.2 \times 10^{3}}{11.0}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{2.11455}{999.0}} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}\)
\(\text{Conversion Equation}\)
\(\dfrac{1.2 \times 10^{3}}{11.0} = {\color{rgb(20,165,174)} x} \times \dfrac{2.11455}{999.0}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times \dfrac{2.11455}{999.0} = \dfrac{1.2 \times 10^{3}}{11.0}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{999.0}{2.11455}\right)\)
\({\color{rgb(20,165,174)} x} \times \dfrac{2.11455}{999.0} \times \dfrac{999.0}{2.11455} = \dfrac{1.2 \times 10^{3}}{11.0} \times \dfrac{999.0}{2.11455}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{2.11455}} \times {\color{rgb(99,194,222)} \cancel{999.0}}}{{\color{rgb(99,194,222)} \cancel{999.0}} \times {\color{rgb(255,204,153)} \cancel{2.11455}}} = \dfrac{1.2 \times 10^{3} \times 999.0}{11.0 \times 2.11455}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{1.2 \times 10^{3} \times 999.0}{11.0 \times 2.11455}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx51539.012169\approx5.1539 \times 10^{4}\)
\(\text{Conversion Equation}\)
\(1.0\left(cho(町)\right)\approx{\color{rgb(20,165,174)} 5.1539 \times 10^{4}}\left(line\right)\)