Convert click to cable length
Learn how to convert
1
click to
cable length
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(click\right)={\color{rgb(20,165,174)} x}\left(cable \text{ } length\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(meter\right)\)
\(\text{Left side: 1.0 } \left(click\right) = {\color{rgb(89,182,91)} 10^{3}\left(meter\right)} = {\color{rgb(89,182,91)} 10^{3}\left(m\right)}\)
\(\text{Right side: 1.0 } \left(cable \text{ } length\right) = {\color{rgb(125,164,120)} 219.456\left(meter\right)} = {\color{rgb(125,164,120)} 219.456\left(m\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(click\right)={\color{rgb(20,165,174)} x}\left(cable \text{ } length\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 10^{3}} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 219.456}} \times {\color{rgb(125,164,120)} \left(meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 10^{3}} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 219.456} \cdot {\color{rgb(125,164,120)} \left(m\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 10^{3}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 219.456} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}\)
\(\text{Conversion Equation}\)
\(10^{3} = {\color{rgb(20,165,174)} x} \times 219.456\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 219.456 = 10^{3}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{219.456}\right)\)
\({\color{rgb(20,165,174)} x} \times 219.456 \times \dfrac{1.0}{219.456} = 10^{3} \times \dfrac{1.0}{219.456}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{219.456}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{219.456}}} = 10^{3} \times \dfrac{1.0}{219.456}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{3}}{219.456}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx4.5567220764\approx4.5567\)
\(\text{Conversion Equation}\)
\(1.0\left(click\right)\approx{\color{rgb(20,165,174)} 4.5567}\left(cable \text{ } length\right)\)