# Convert cong to cho(町)

Learn how to convert 1 cong to cho(町) step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(cong\right)={\color{rgb(20,165,174)} x}\left(cho(町)\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(square \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(cong\right) = {\color{rgb(89,182,91)} 10^{3}\left(square \text{ } meter\right)} = {\color{rgb(89,182,91)} 10^{3}\left(m^{2}\right)}$$
$$\text{Right side: 1.0 } \left(cho(町)\right) = {\color{rgb(125,164,120)} \dfrac{1.2 \times 10^{6}}{121.0}\left(square \text{ } meter\right)} = {\color{rgb(125,164,120)} \dfrac{1.2 \times 10^{6}}{121.0}\left(m^{2}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(cong\right)={\color{rgb(20,165,174)} x}\left(cho(町)\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{3}} \times {\color{rgb(89,182,91)} \left(square \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{1.2 \times 10^{6}}{121.0}}} \times {\color{rgb(125,164,120)} \left(square \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 10^{3}} \cdot {\color{rgb(89,182,91)} \left(m^{2}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{1.2 \times 10^{6}}{121.0}} \cdot {\color{rgb(125,164,120)} \left(m^{2}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{3}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{2}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{1.2 \times 10^{6}}{121.0}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{2}\right)}}$$
$$\text{Conversion Equation}$$
$$10^{3} = {\color{rgb(20,165,174)} x} \times \dfrac{1.2 \times 10^{6}}{121.0}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$${\color{rgb(255,204,153)} \cancel{10^{3}}} = {\color{rgb(20,165,174)} x} \times \dfrac{1.2 \times {\color{rgb(255,204,153)} \cancelto{10^{3}}{10^{6}}}}{121.0}$$
$$\text{Simplify}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times \dfrac{1.2 \times 10^{3}}{121.0}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times \dfrac{1.2 \times 10^{3}}{121.0} = 1.0$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{121.0}{1.2 \times 10^{3}}\right)$$
$${\color{rgb(20,165,174)} x} \times \dfrac{1.2 \times 10^{3}}{121.0} \times \dfrac{121.0}{1.2 \times 10^{3}} = \times \dfrac{121.0}{1.2 \times 10^{3}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{1.2}} \times {\color{rgb(99,194,222)} \cancel{10^{3}}} \times {\color{rgb(166,218,227)} \cancel{121.0}}}{{\color{rgb(166,218,227)} \cancel{121.0}} \times {\color{rgb(255,204,153)} \cancel{1.2}} \times {\color{rgb(99,194,222)} \cancel{10^{3}}}} = \dfrac{121.0}{1.2 \times 10^{3}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{121.0}{1.2 \times 10^{3}}$$
Rewrite equation
$$\dfrac{1.0}{10^{3}}\text{ can be rewritten to }10^{-3}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{-3} \times 121.0}{1.2}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.1008333333\approx1.0083 \times 10^{-1}$$
$$\text{Conversion Equation}$$
$$1.0\left(cong\right)\approx{\color{rgb(20,165,174)} 1.0083 \times 10^{-1}}\left(cho(町)\right)$$