Convert cord to drop
Learn how to convert
1
cord to
drop
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(cord\right)={\color{rgb(20,165,174)} x}\left(drop\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(cubic \text{ } meter\right)\)
\(\text{Left side: 1.0 } \left(cord\right) = {\color{rgb(89,182,91)} 3.624556363776\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 3.624556363776\left(m^{3}\right)}\)
\(\text{Right side: 1.0 } \left(drop\right) = {\color{rgb(125,164,120)} 8.21486932291667 \times 10^{-8}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 8.21486932291667 \times 10^{-8}\left(m^{3}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(cord\right)={\color{rgb(20,165,174)} x}\left(drop\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 3.624556363776} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 8.21486932291667 \times 10^{-8}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 3.624556363776} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 8.21486932291667 \times 10^{-8}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 3.624556363776} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 8.21486932291667 \times 10^{-8}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}\)
\(\text{Conversion Equation}\)
\(3.624556363776 = {\color{rgb(20,165,174)} x} \times 8.21486932291667 \times 10^{-8}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 8.21486932291667 \times 10^{-8} = 3.624556363776\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{8.21486932291667 \times 10^{-8}}\right)\)
\({\color{rgb(20,165,174)} x} \times 8.21486932291667 \times 10^{-8} \times \dfrac{1.0}{8.21486932291667 \times 10^{-8}} = 3.624556363776 \times \dfrac{1.0}{8.21486932291667 \times 10^{-8}}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{8.21486932291667}} \times {\color{rgb(99,194,222)} \cancel{10^{-8}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{8.21486932291667}} \times {\color{rgb(99,194,222)} \cancel{10^{-8}}}} = 3.624556363776 \times \dfrac{1.0}{8.21486932291667 \times 10^{-8}}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{3.624556363776}{8.21486932291667 \times 10^{-8}}\)
Rewrite equation
\(\dfrac{1.0}{10^{-8}}\text{ can be rewritten to }10^{8}\)
\(\text{Rewrite}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{8} \times 3.624556363776}{8.21486932291667}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx44121899.221\approx4.4122 \times 10^{7}\)
\(\text{Conversion Equation}\)
\(1.0\left(cord\right)\approx{\color{rgb(20,165,174)} 4.4122 \times 10^{7}}\left(drop\right)\)