# Convert cubic foot / minute to gill / second

Learn how to convert 1 cubic foot / minute to gill / second step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(\dfrac{cubic \text{ } foot}{minute}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{gill}{second}\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(\dfrac{cubic \text{ } meter}{second}\right)$$
$$\text{Left side: 1.0 } \left(\dfrac{cubic \text{ } foot}{minute}\right) = {\color{rgb(89,182,91)} \dfrac{2.8316846592 \times 10^{-2}}{60.0}\left(\dfrac{cubic \text{ } meter}{second}\right)} = {\color{rgb(89,182,91)} \dfrac{2.8316846592 \times 10^{-2}}{60.0}\left(\dfrac{m^{3}}{s}\right)}$$
$$\text{Right side: 1.0 } \left(\dfrac{gill}{second}\right) = {\color{rgb(125,164,120)} 1.420653125 \times 10^{-4}\left(\dfrac{cubic \text{ } meter}{second}\right)} = {\color{rgb(125,164,120)} 1.420653125 \times 10^{-4}\left(\dfrac{m^{3}}{s}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(\dfrac{cubic \text{ } foot}{minute}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{gill}{second}\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{2.8316846592 \times 10^{-2}}{60.0}} \times {\color{rgb(89,182,91)} \left(\dfrac{cubic \text{ } meter}{second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1.420653125 \times 10^{-4}}} \times {\color{rgb(125,164,120)} \left(\dfrac{cubic \text{ } meter}{second}\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{2.8316846592 \times 10^{-2}}{60.0}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m^{3}}{s}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1.420653125 \times 10^{-4}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m^{3}}{s}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{2.8316846592 \times 10^{-2}}{60.0}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m^{3}}{s}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1.420653125 \times 10^{-4}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m^{3}}{s}\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{2.8316846592 \times 10^{-2}}{60.0} = {\color{rgb(20,165,174)} x} \times 1.420653125 \times 10^{-4}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$\dfrac{2.8316846592 \times {\color{rgb(255,204,153)} \cancel{10^{-2}}}}{60.0} = {\color{rgb(20,165,174)} x} \times 1.420653125 \times {\color{rgb(255,204,153)} \cancelto{10^{-2}}{10^{-4}}}$$
$$\text{Simplify}$$
$$\dfrac{2.8316846592}{60.0} = {\color{rgb(20,165,174)} x} \times 1.420653125 \times 10^{-2}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 1.420653125 \times 10^{-2} = \dfrac{2.8316846592}{60.0}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{1.420653125 \times 10^{-2}}\right)$$
$${\color{rgb(20,165,174)} x} \times 1.420653125 \times 10^{-2} \times \dfrac{1.0}{1.420653125 \times 10^{-2}} = \dfrac{2.8316846592}{60.0} \times \dfrac{1.0}{1.420653125 \times 10^{-2}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{1.420653125}} \times {\color{rgb(99,194,222)} \cancel{10^{-2}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{1.420653125}} \times {\color{rgb(99,194,222)} \cancel{10^{-2}}}} = \dfrac{2.8316846592 \times 1.0}{60.0 \times 1.420653125 \times 10^{-2}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{2.8316846592}{60.0 \times 1.420653125 \times 10^{-2}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-2}}\text{ can be rewritten to }10^{2}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{2} \times 2.8316846592}{60.0 \times 1.420653125}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx3.3220455782\approx3.322$$
$$\text{Conversion Equation}$$
$$1.0\left(\dfrac{cubic \text{ } foot}{minute}\right)\approx{\color{rgb(20,165,174)} 3.322}\left(\dfrac{gill}{second}\right)$$