# Convert cubic inch / hour to gallon / hour

Learn how to convert 1 cubic inch / hour to gallon / hour step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(\dfrac{cubic \text{ } inch}{hour}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{gallon}{hour}\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(\dfrac{cubic \text{ } meter}{second}\right)$$
$$\text{Left side: 1.0 } \left(\dfrac{cubic \text{ } inch}{hour}\right) = {\color{rgb(89,182,91)} \dfrac{1.6387064 \times 10^{-5}}{3.6 \times 10^{3}}\left(\dfrac{cubic \text{ } meter}{second}\right)} = {\color{rgb(89,182,91)} \dfrac{1.6387064 \times 10^{-5}}{3.6 \times 10^{3}}\left(\dfrac{m^{3}}{s}\right)}$$
$$\text{Right side: 1.0 } \left(\dfrac{gallon}{hour}\right) = {\color{rgb(125,164,120)} \dfrac{4.54609 \times 10^{-3}}{3.6 \times 10^{3}}\left(\dfrac{cubic \text{ } meter}{second}\right)} = {\color{rgb(125,164,120)} \dfrac{4.54609 \times 10^{-3}}{3.6 \times 10^{3}}\left(\dfrac{m^{3}}{s}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(\dfrac{cubic \text{ } inch}{hour}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{gallon}{hour}\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{1.6387064 \times 10^{-5}}{3.6 \times 10^{3}}} \times {\color{rgb(89,182,91)} \left(\dfrac{cubic \text{ } meter}{second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{4.54609 \times 10^{-3}}{3.6 \times 10^{3}}}} \times {\color{rgb(125,164,120)} \left(\dfrac{cubic \text{ } meter}{second}\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{1.6387064 \times 10^{-5}}{3.6 \times 10^{3}}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m^{3}}{s}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{4.54609 \times 10^{-3}}{3.6 \times 10^{3}}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m^{3}}{s}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{1.6387064 \times 10^{-5}}{3.6 \times 10^{3}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m^{3}}{s}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{4.54609 \times 10^{-3}}{3.6 \times 10^{3}}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m^{3}}{s}\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{1.6387064 \times 10^{-5}}{3.6 \times 10^{3}} = {\color{rgb(20,165,174)} x} \times \dfrac{4.54609 \times 10^{-3}}{3.6 \times 10^{3}}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$\dfrac{1.6387064 \times {\color{rgb(166,218,227)} \cancelto{10^{-2}}{10^{-5}}}}{{\color{rgb(255,204,153)} \cancel{3.6}} \times {\color{rgb(99,194,222)} \cancel{10^{3}}}} = {\color{rgb(20,165,174)} x} \times \dfrac{4.54609 \times {\color{rgb(166,218,227)} \cancel{10^{-3}}}}{{\color{rgb(255,204,153)} \cancel{3.6}} \times {\color{rgb(99,194,222)} \cancel{10^{3}}}}$$
$$\text{Simplify}$$
$$1.6387064 \times 10^{-2} = {\color{rgb(20,165,174)} x} \times 4.54609$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 4.54609 = 1.6387064 \times 10^{-2}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{4.54609}\right)$$
$${\color{rgb(20,165,174)} x} \times 4.54609 \times \dfrac{1.0}{4.54609} = 1.6387064 \times 10^{-2} \times \dfrac{1.0}{4.54609}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{4.54609}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{4.54609}}} = 1.6387064 \times 10^{-2} \times \dfrac{1.0}{4.54609}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.6387064 \times 10^{-2}}{4.54609}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0036046501\approx3.6047 \times 10^{-3}$$
$$\text{Conversion Equation}$$
$$1.0\left(\dfrac{cubic \text{ } inch}{hour}\right)\approx{\color{rgb(20,165,174)} 3.6047 \times 10^{-3}}\left(\dfrac{gallon}{hour}\right)$$