# Convert cubic inch / second to cubic mile / hour

Learn how to convert 1 cubic inch / second to cubic mile / hour step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(\dfrac{cubic \text{ } inch}{second}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{cubic \text{ } mile}{hour}\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(\dfrac{cubic \text{ } meter}{second}\right)$$
$$\text{Left side: 1.0 } \left(\dfrac{cubic \text{ } inch}{second}\right) = {\color{rgb(89,182,91)} 1.6387064 \times 10^{-5}\left(\dfrac{cubic \text{ } meter}{second}\right)} = {\color{rgb(89,182,91)} 1.6387064 \times 10^{-5}\left(\dfrac{m^{3}}{s}\right)}$$
$$\text{Right side: 1.0 } \left(\dfrac{cubic \text{ } mile}{hour}\right) = {\color{rgb(125,164,120)} \dfrac{4168181825.44058}{3.6 \times 10^{3}}\left(\dfrac{cubic \text{ } meter}{second}\right)} = {\color{rgb(125,164,120)} \dfrac{4168181825.44058}{3.6 \times 10^{3}}\left(\dfrac{m^{3}}{s}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(\dfrac{cubic \text{ } inch}{second}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{cubic \text{ } mile}{hour}\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 1.6387064 \times 10^{-5}} \times {\color{rgb(89,182,91)} \left(\dfrac{cubic \text{ } meter}{second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{4168181825.44058}{3.6 \times 10^{3}}}} \times {\color{rgb(125,164,120)} \left(\dfrac{cubic \text{ } meter}{second}\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 1.6387064 \times 10^{-5}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m^{3}}{s}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{4168181825.44058}{3.6 \times 10^{3}}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m^{3}}{s}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 1.6387064 \times 10^{-5}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m^{3}}{s}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{4168181825.44058}{3.6 \times 10^{3}}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m^{3}}{s}\right)}}$$
$$\text{Conversion Equation}$$
$$1.6387064 \times 10^{-5} = {\color{rgb(20,165,174)} x} \times \dfrac{4168181825.44058}{3.6 \times 10^{3}}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times \dfrac{4168181825.44058}{3.6 \times 10^{3}} = 1.6387064 \times 10^{-5}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{3.6 \times 10^{3}}{4168181825.44058}\right)$$
$${\color{rgb(20,165,174)} x} \times \dfrac{4168181825.44058}{3.6 \times 10^{3}} \times \dfrac{3.6 \times 10^{3}}{4168181825.44058} = 1.6387064 \times 10^{-5} \times \dfrac{3.6 \times 10^{3}}{4168181825.44058}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{4168181825.44058}} \times {\color{rgb(99,194,222)} \cancel{3.6}} \times {\color{rgb(166,218,227)} \cancel{10^{3}}}}{{\color{rgb(99,194,222)} \cancel{3.6}} \times {\color{rgb(166,218,227)} \cancel{10^{3}}} \times {\color{rgb(255,204,153)} \cancel{4168181825.44058}}} = 1.6387064 \times {\color{rgb(255,204,153)} \cancelto{10^{-2}}{10^{-5}}} \times \dfrac{3.6 \times {\color{rgb(255,204,153)} \cancel{10^{3}}}}{4168181825.44058}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.6387064 \times 10^{-2} \times 3.6}{4168181825.44058}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx1.4153276625 \times 10^{-11}\approx1.4153 \times 10^{-11}$$
$$\text{Conversion Equation}$$
$$1.0\left(\dfrac{cubic \text{ } inch}{second}\right)\approx{\color{rgb(20,165,174)} 1.4153 \times 10^{-11}}\left(\dfrac{cubic \text{ } mile}{hour}\right)$$