# Convert cubic meter / second to cubic mile / second

Learn how to convert 1 cubic meter / second to cubic mile / second step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(\dfrac{cubic \text{ } meter}{second}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{cubic \text{ } mile}{second}\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(\dfrac{cubic \text{ } meter}{second}\right)$$
$$\text{Left side: 1.0 } \left(\dfrac{cubic \text{ } meter}{second}\right) = {\color{rgb(89,182,91)} 1.0\left(\dfrac{cubic \text{ } meter}{second}\right)} = {\color{rgb(89,182,91)} 1.0\left(\dfrac{m^{3}}{s}\right)}$$
$$\text{Right side: 1.0 } \left(\dfrac{cubic \text{ } mile}{second}\right) = {\color{rgb(125,164,120)} 4168181825.44058\left(\dfrac{cubic \text{ } meter}{second}\right)} = {\color{rgb(125,164,120)} 4168181825.44058\left(\dfrac{m^{3}}{s}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(\dfrac{cubic \text{ } meter}{second}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{cubic \text{ } mile}{second}\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 1.0} \times {\color{rgb(89,182,91)} \left(\dfrac{cubic \text{ } meter}{second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 4168181825.44058}} \times {\color{rgb(125,164,120)} \left(\dfrac{cubic \text{ } meter}{second}\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 1.0} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m^{3}}{s}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 4168181825.44058} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m^{3}}{s}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 1.0} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m^{3}}{s}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 4168181825.44058} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m^{3}}{s}\right)}}$$
$$\text{Conversion Equation}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times 4168181825.44058$$
$$\text{Simplify}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times 4168181825.44058$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 4168181825.44058 = 1.0$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{4168181825.44058}\right)$$
$${\color{rgb(20,165,174)} x} \times 4168181825.44058 \times \dfrac{1.0}{4168181825.44058} = 1.0 \times \dfrac{1.0}{4168181825.44058}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{4168181825.44058}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{4168181825.44058}}} = 1.0 \times \dfrac{1.0}{4168181825.44058}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.0}{4168181825.44058}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0000000002\approx2.3991 \times 10^{-10}$$
$$\text{Conversion Equation}$$
$$1.0\left(\dfrac{cubic \text{ } meter}{second}\right)\approx{\color{rgb(20,165,174)} 2.3991 \times 10^{-10}}\left(\dfrac{cubic \text{ } mile}{second}\right)$$