Convert cubic meter to teaspoon
Learn how to convert
1
cubic meter to
teaspoon
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(cubic \text{ } meter\right)={\color{rgb(20,165,174)} x}\left(teaspoon\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(cubic \text{ } meter\right)\)
\(\text{Left side: 1.0 } \left(cubic \text{ } meter\right) = {\color{rgb(89,182,91)} 1.0\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 1.0\left(m^{3}\right)}\)
\(\text{Right side: 1.0 } \left(teaspoon\right) = {\color{rgb(125,164,120)} 4.73551041666667 \times 10^{-6}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 4.73551041666667 \times 10^{-6}\left(m^{3}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(cubic \text{ } meter\right)={\color{rgb(20,165,174)} x}\left(teaspoon\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 1.0} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 4.73551041666667 \times 10^{-6}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 1.0} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 4.73551041666667 \times 10^{-6}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 1.0} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 4.73551041666667 \times 10^{-6}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}\)
\(\text{Conversion Equation}\)
\(1.0 = {\color{rgb(20,165,174)} x} \times 4.73551041666667 \times 10^{-6}\)
\(\text{Simplify}\)
\(1.0 = {\color{rgb(20,165,174)} x} \times 4.73551041666667 \times 10^{-6}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 4.73551041666667 \times 10^{-6} = 1.0\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{4.73551041666667 \times 10^{-6}}\right)\)
\({\color{rgb(20,165,174)} x} \times 4.73551041666667 \times 10^{-6} \times \dfrac{1.0}{4.73551041666667 \times 10^{-6}} = 1.0 \times \dfrac{1.0}{4.73551041666667 \times 10^{-6}}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{4.73551041666667}} \times {\color{rgb(99,194,222)} \cancel{10^{-6}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{4.73551041666667}} \times {\color{rgb(99,194,222)} \cancel{10^{-6}}}} = 1.0 \times \dfrac{1.0}{4.73551041666667 \times 10^{-6}}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{1.0}{4.73551041666667 \times 10^{-6}}\)
Rewrite equation
\(\dfrac{1.0}{10^{-6}}\text{ can be rewritten to }10^{6}\)
\(\text{Rewrite}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{6}}{4.73551041666667}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx211170.47837\approx2.1117 \times 10^{5}\)
\(\text{Conversion Equation}\)
\(1.0\left(cubic \text{ } meter\right)\approx{\color{rgb(20,165,174)} 2.1117 \times 10^{5}}\left(teaspoon\right)\)