Convert cubic yard / second to cubic mile / hour
Learn how to convert
1
cubic yard / second to
cubic mile / hour
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(\dfrac{cubic \text{ } yard}{second}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{cubic \text{ } mile}{hour}\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(\dfrac{cubic \text{ } meter}{second}\right)\)
\(\text{Left side: 1.0 } \left(\dfrac{cubic \text{ } yard}{second}\right) = {\color{rgb(89,182,91)} 0.764554857984\left(\dfrac{cubic \text{ } meter}{second}\right)} = {\color{rgb(89,182,91)} 0.764554857984\left(\dfrac{m^{3}}{s}\right)}\)
\(\text{Right side: 1.0 } \left(\dfrac{cubic \text{ } mile}{hour}\right) = {\color{rgb(125,164,120)} \dfrac{4168181825.44058}{3.6 \times 10^{3}}\left(\dfrac{cubic \text{ } meter}{second}\right)} = {\color{rgb(125,164,120)} \dfrac{4168181825.44058}{3.6 \times 10^{3}}\left(\dfrac{m^{3}}{s}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(\dfrac{cubic \text{ } yard}{second}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{cubic \text{ } mile}{hour}\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 0.764554857984} \times {\color{rgb(89,182,91)} \left(\dfrac{cubic \text{ } meter}{second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{4168181825.44058}{3.6 \times 10^{3}}}} \times {\color{rgb(125,164,120)} \left(\dfrac{cubic \text{ } meter}{second}\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 0.764554857984} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m^{3}}{s}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{4168181825.44058}{3.6 \times 10^{3}}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m^{3}}{s}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 0.764554857984} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m^{3}}{s}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{4168181825.44058}{3.6 \times 10^{3}}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m^{3}}{s}\right)}}\)
\(\text{Conversion Equation}\)
\(0.764554857984 = {\color{rgb(20,165,174)} x} \times \dfrac{4168181825.44058}{3.6 \times 10^{3}}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times \dfrac{4168181825.44058}{3.6 \times 10^{3}} = 0.764554857984\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{3.6 \times 10^{3}}{4168181825.44058}\right)\)
\({\color{rgb(20,165,174)} x} \times \dfrac{4168181825.44058}{3.6 \times 10^{3}} \times \dfrac{3.6 \times 10^{3}}{4168181825.44058} = 0.764554857984 \times \dfrac{3.6 \times 10^{3}}{4168181825.44058}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{4168181825.44058}} \times {\color{rgb(99,194,222)} \cancel{3.6}} \times {\color{rgb(166,218,227)} \cancel{10^{3}}}}{{\color{rgb(99,194,222)} \cancel{3.6}} \times {\color{rgb(166,218,227)} \cancel{10^{3}}} \times {\color{rgb(255,204,153)} \cancel{4168181825.44058}}} = 0.764554857984 \times \dfrac{3.6 \times 10^{3}}{4168181825.44058}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{0.764554857984 \times 3.6 \times 10^{3}}{4168181825.44058}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.0000006603\approx6.6034 \times 10^{-7}\)
\(\text{Conversion Equation}\)
\(1.0\left(\dfrac{cubic \text{ } yard}{second}\right)\approx{\color{rgb(20,165,174)} 6.6034 \times 10^{-7}}\left(\dfrac{cubic \text{ } mile}{hour}\right)\)