Convert cup to drop
Learn how to convert
1
cup to
drop
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(cup\right)={\color{rgb(20,165,174)} x}\left(drop\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(cubic \text{ } meter\right)\)
\(\text{Left side: 1.0 } \left(cup\right) = {\color{rgb(89,182,91)} 2.273045 \times 10^{-4}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 2.273045 \times 10^{-4}\left(m^{3}\right)}\)
\(\text{Right side: 1.0 } \left(drop\right) = {\color{rgb(125,164,120)} 8.21486932291667 \times 10^{-8}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 8.21486932291667 \times 10^{-8}\left(m^{3}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(cup\right)={\color{rgb(20,165,174)} x}\left(drop\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 2.273045 \times 10^{-4}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 8.21486932291667 \times 10^{-8}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 2.273045 \times 10^{-4}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 8.21486932291667 \times 10^{-8}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 2.273045 \times 10^{-4}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 8.21486932291667 \times 10^{-8}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}\)
\(\text{Conversion Equation}\)
\(2.273045 \times 10^{-4} = {\color{rgb(20,165,174)} x} \times 8.21486932291667 \times 10^{-8}\)
Cancel factors on both sides
\(\text{Cancel factors}\)
\(2.273045 \times {\color{rgb(255,204,153)} \cancel{10^{-4}}} = {\color{rgb(20,165,174)} x} \times 8.21486932291667 \times {\color{rgb(255,204,153)} \cancelto{10^{-4}}{10^{-8}}}\)
\(\text{Simplify}\)
\(2.273045 = {\color{rgb(20,165,174)} x} \times 8.21486932291667 \times 10^{-4}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 8.21486932291667 \times 10^{-4} = 2.273045\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{8.21486932291667 \times 10^{-4}}\right)\)
\({\color{rgb(20,165,174)} x} \times 8.21486932291667 \times 10^{-4} \times \dfrac{1.0}{8.21486932291667 \times 10^{-4}} = 2.273045 \times \dfrac{1.0}{8.21486932291667 \times 10^{-4}}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{8.21486932291667}} \times {\color{rgb(99,194,222)} \cancel{10^{-4}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{8.21486932291667}} \times {\color{rgb(99,194,222)} \cancel{10^{-4}}}} = 2.273045 \times \dfrac{1.0}{8.21486932291667 \times 10^{-4}}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{2.273045}{8.21486932291667 \times 10^{-4}}\)
Rewrite equation
\(\dfrac{1.0}{10^{-4}}\text{ can be rewritten to }10^{4}\)
\(\text{Rewrite}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{4} \times 2.273045}{8.21486932291667}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx2766.9886284\approx2.767 \times 10^{3}\)
\(\text{Conversion Equation}\)
\(1.0\left(cup\right)\approx{\color{rgb(20,165,174)} 2.767 \times 10^{3}}\left(drop\right)\)