Convert cup to load

Learn how to convert 1 cup to load step by step.

Calculation Breakdown

Set up the equation
\(1.0\left(cup\right)={\color{rgb(20,165,174)} x}\left(load\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(cubic \text{ } meter\right)\)
\(\text{Left side: 1.0 } \left(cup\right) = {\color{rgb(89,182,91)} 2.365882365 \times 10^{-4}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 2.365882365 \times 10^{-4}\left(m^{3}\right)}\)
\(\text{Right side: 1.0 } \left(load\right) = {\color{rgb(125,164,120)} 1.4158423296\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 1.4158423296\left(m^{3}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(cup\right)={\color{rgb(20,165,174)} x}\left(load\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 2.365882365 \times 10^{-4}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1.4158423296}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 2.365882365 \times 10^{-4}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1.4158423296} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 2.365882365 \times 10^{-4}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1.4158423296} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}\)
\(\text{Conversion Equation}\)
\(2.365882365 \times 10^{-4} = {\color{rgb(20,165,174)} x} \times 1.4158423296\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 1.4158423296 = 2.365882365 \times 10^{-4}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{1.4158423296}\right)\)
\({\color{rgb(20,165,174)} x} \times 1.4158423296 \times \dfrac{1.0}{1.4158423296} = 2.365882365 \times 10^{-4} \times \dfrac{1.0}{1.4158423296}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{1.4158423296}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{1.4158423296}}} = 2.365882365 \times 10^{-4} \times \dfrac{1.0}{1.4158423296}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{2.365882365 \times 10^{-4}}{1.4158423296}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.0001671007\approx1.671 \times 10^{-4}\)
\(\text{Conversion Equation}\)
\(1.0\left(cup\right)\approx{\color{rgb(20,165,174)} 1.671 \times 10^{-4}}\left(load\right)\)

Cookie Policy

PLEASE READ AND ACCEPT OUR COOKIE POLICY.