Convert dash to dram
Learn how to convert
1
dash to
dram
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(dash\right)={\color{rgb(20,165,174)} x}\left(dram\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(cubic \text{ } meter\right)\)
\(\text{Left side: 1.0 } \left(dash\right) = {\color{rgb(89,182,91)} 3.69961751302083 \times 10^{-7}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 3.69961751302083 \times 10^{-7}\left(m^{3}\right)}\)
\(\text{Right side: 1.0 } \left(dram\right) = {\color{rgb(125,164,120)} 3.6966911953125 \times 10^{-6}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 3.6966911953125 \times 10^{-6}\left(m^{3}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(dash\right)={\color{rgb(20,165,174)} x}\left(dram\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 3.69961751302083 \times 10^{-7}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 3.6966911953125 \times 10^{-6}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 3.69961751302083 \times 10^{-7}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 3.6966911953125 \times 10^{-6}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 3.69961751302083 \times 10^{-7}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 3.6966911953125 \times 10^{-6}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}\)
\(\text{Conversion Equation}\)
\(3.69961751302083 \times 10^{-7} = {\color{rgb(20,165,174)} x} \times 3.6966911953125 \times 10^{-6}\)
Cancel factors on both sides
\(\text{Cancel factors}\)
\(3.69961751302083 \times {\color{rgb(255,204,153)} \cancelto{10^{-1}}{10^{-7}}} = {\color{rgb(20,165,174)} x} \times 3.6966911953125 \times {\color{rgb(255,204,153)} \cancel{10^{-6}}}\)
\(\text{Simplify}\)
\(3.69961751302083 \times 10^{-1} = {\color{rgb(20,165,174)} x} \times 3.6966911953125\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 3.6966911953125 = 3.69961751302083 \times 10^{-1}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{3.6966911953125}\right)\)
\({\color{rgb(20,165,174)} x} \times 3.6966911953125 \times \dfrac{1.0}{3.6966911953125} = 3.69961751302083 \times 10^{-1} \times \dfrac{1.0}{3.6966911953125}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{3.6966911953125}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{3.6966911953125}}} = 3.69961751302083 \times 10^{-1} \times \dfrac{1.0}{3.6966911953125}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{3.69961751302083 \times 10^{-1}}{3.6966911953125}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.1000791605\approx1.0008 \times 10^{-1}\)
\(\text{Conversion Equation}\)
\(1.0\left(dash\right)\approx{\color{rgb(20,165,174)} 1.0008 \times 10^{-1}}\left(dram\right)\)