Convert degree / hour to degree / second

Learn how to convert 1 degree / hour to degree / second step by step.

Calculation Breakdown

Set up the equation
\(1.0\left(\dfrac{degree}{hour}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{degree}{second}\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(\dfrac{radian}{second}\right)\)
\(\text{Left side: 1.0 } \left(\dfrac{degree}{hour}\right) = {\color{rgb(89,182,91)} \dfrac{π}{6.48 \times 10^{5}}\left(\dfrac{radian}{second}\right)} = {\color{rgb(89,182,91)} \dfrac{π}{6.48 \times 10^{5}}\left(\dfrac{rad}{s}\right)}\)
\(\text{Right side: 1.0 } \left(\dfrac{degree}{second}\right) = {\color{rgb(125,164,120)} \dfrac{π}{180.0}\left(\dfrac{radian}{second}\right)} = {\color{rgb(125,164,120)} \dfrac{π}{180.0}\left(\dfrac{rad}{s}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(\dfrac{degree}{hour}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{degree}{second}\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{π}{6.48 \times 10^{5}}} \times {\color{rgb(89,182,91)} \left(\dfrac{radian}{second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{π}{180.0}}} \times {\color{rgb(125,164,120)} \left(\dfrac{radian}{second}\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} \dfrac{π}{6.48 \times 10^{5}}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{rad}{s}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{π}{180.0}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{rad}{s}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{π}{6.48 \times 10^{5}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{rad}{s}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{π}{180.0}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{rad}{s}\right)}}\)
\(\text{Conversion Equation}\)
\(\dfrac{π}{6.48 \times 10^{5}} = {\color{rgb(20,165,174)} x} \times \dfrac{π}{180.0}\)
Cancel factors on both sides
\(\text{Cancel factors}\)
\(\dfrac{{\color{rgb(255,204,153)} \cancel{π}}}{6.48 \times 10^{5}} = {\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{π}}}{180.0}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times \dfrac{1.0}{180.0} = \dfrac{1.0}{6.48 \times 10^{5}}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{180.0}{1.0}\right)\)
\({\color{rgb(20,165,174)} x} \times \dfrac{1.0}{180.0} \times \dfrac{180.0}{1.0} = \dfrac{1.0}{6.48 \times 10^{5}} \times \dfrac{180.0}{1.0}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}} \times {\color{rgb(99,194,222)} \cancel{180.0}}}{{\color{rgb(99,194,222)} \cancel{180.0}} \times {\color{rgb(255,204,153)} \cancel{1.0}}} = \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}} \times 180.0}{6.48 \times 10^{5} \times {\color{rgb(255,204,153)} \cancel{1.0}}}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{180.0}{6.48 \times 10^{5}}\)
Rewrite equation
\(\dfrac{1.0}{10^{5}}\text{ can be rewritten to }10^{-5}\)
\(\text{Rewrite}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{-5} \times 180.0}{6.48}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.0002777778\approx2.7778 \times 10^{-4}\)
\(\text{Conversion Equation}\)
\(1.0\left(\dfrac{degree}{hour}\right)\approx{\color{rgb(20,165,174)} 2.7778 \times 10^{-4}}\left(\dfrac{degree}{second}\right)\)

Cookie Policy

PLEASE READ AND ACCEPT OUR COOKIE POLICY.