Convert degree / minute to radian / hour

Learn how to convert 1 degree / minute to radian / hour step by step.

Calculation Breakdown

Set up the equation
\(1.0\left(\dfrac{degree}{minute}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{radian}{hour}\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(\dfrac{radian}{second}\right)\)
\(\text{Left side: 1.0 } \left(\dfrac{degree}{minute}\right) = {\color{rgb(89,182,91)} \dfrac{π}{1.08 \times 10^{4}}\left(\dfrac{radian}{second}\right)} = {\color{rgb(89,182,91)} \dfrac{π}{1.08 \times 10^{4}}\left(\dfrac{rad}{s}\right)}\)
\(\text{Right side: 1.0 } \left(\dfrac{radian}{hour}\right) = {\color{rgb(125,164,120)} \dfrac{1.0}{3.6 \times 10^{3}}\left(\dfrac{radian}{second}\right)} = {\color{rgb(125,164,120)} \dfrac{1.0}{3.6 \times 10^{3}}\left(\dfrac{rad}{s}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(\dfrac{degree}{minute}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{radian}{hour}\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{π}{1.08 \times 10^{4}}} \times {\color{rgb(89,182,91)} \left(\dfrac{radian}{second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{1.0}{3.6 \times 10^{3}}}} \times {\color{rgb(125,164,120)} \left(\dfrac{radian}{second}\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} \dfrac{π}{1.08 \times 10^{4}}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{rad}{s}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{1.0}{3.6 \times 10^{3}}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{rad}{s}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{π}{1.08 \times 10^{4}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{rad}{s}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{1.0}{3.6 \times 10^{3}}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{rad}{s}\right)}}\)
\(\text{Conversion Equation}\)
\(\dfrac{π}{1.08 \times 10^{4}} = {\color{rgb(20,165,174)} x} \times \dfrac{1.0}{3.6 \times 10^{3}}\)
Cancel factors on both sides
\(\text{Cancel factors}\)
\(\dfrac{π}{1.08 \times {\color{rgb(255,204,153)} \cancelto{10}{10^{4}}}} = {\color{rgb(20,165,174)} x} \times \dfrac{1.0}{3.6 \times {\color{rgb(255,204,153)} \cancel{10^{3}}}}\)
\(\text{Simplify}\)
\(\dfrac{π}{1.08 \times 10.0} = {\color{rgb(20,165,174)} x} \times \dfrac{1.0}{3.6}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times \dfrac{1.0}{3.6} = \dfrac{π}{1.08 \times 10.0}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{3.6}{1.0}\right)\)
\({\color{rgb(20,165,174)} x} \times \dfrac{1.0}{3.6} \times \dfrac{3.6}{1.0} = \dfrac{π}{1.08 \times 10.0} \times \dfrac{3.6}{1.0}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}} \times {\color{rgb(99,194,222)} \cancel{3.6}}}{{\color{rgb(99,194,222)} \cancel{3.6}} \times {\color{rgb(255,204,153)} \cancel{1.0}}} = \dfrac{π \times 3.6}{1.08 \times 10.0 \times 1.0}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{π \times 3.6}{1.08 \times 10.0}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx1.0471975512\approx1.0472\)
\(\text{Conversion Equation}\)
\(1.0\left(\dfrac{degree}{minute}\right)\approx{\color{rgb(20,165,174)} 1.0472}\left(\dfrac{radian}{hour}\right)\)

Cookie Policy

PLEASE READ AND ACCEPT OUR COOKIE POLICY.