Convert didot point to fod
Learn how to convert
1
didot point to
fod
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(didot \text{ } point\right)={\color{rgb(20,165,174)} x}\left(fod\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(meter\right)\)
\(\text{Left side: 1.0 } \left(didot \text{ } point\right) = {\color{rgb(89,182,91)} 3.77 \times 10^{-4}\left(meter\right)} = {\color{rgb(89,182,91)} 3.77 \times 10^{-4}\left(m\right)}\)
\(\text{Right side: 1.0 } \left(fod\right) = {\color{rgb(125,164,120)} 0.3141\left(meter\right)} = {\color{rgb(125,164,120)} 0.3141\left(m\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(didot \text{ } point\right)={\color{rgb(20,165,174)} x}\left(fod\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 3.77 \times 10^{-4}} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 0.3141}} \times {\color{rgb(125,164,120)} \left(meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 3.77 \times 10^{-4}} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 0.3141} \cdot {\color{rgb(125,164,120)} \left(m\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 3.77 \times 10^{-4}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 0.3141} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}\)
\(\text{Conversion Equation}\)
\(3.77 \times 10^{-4} = {\color{rgb(20,165,174)} x} \times 0.3141\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 0.3141 = 3.77 \times 10^{-4}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{0.3141}\right)\)
\({\color{rgb(20,165,174)} x} \times 0.3141 \times \dfrac{1.0}{0.3141} = 3.77 \times 10^{-4} \times \dfrac{1.0}{0.3141}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{0.3141}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{0.3141}}} = 3.77 \times 10^{-4} \times \dfrac{1.0}{0.3141}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{3.77 \times 10^{-4}}{0.3141}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.0012002547\approx1.2003 \times 10^{-3}\)
\(\text{Conversion Equation}\)
\(1.0\left(didot \text{ } point\right)\approx{\color{rgb(20,165,174)} 1.2003 \times 10^{-3}}\left(fod\right)\)