Convert dram to peck

Learn how to convert 1 dram to peck step by step.

Calculation Breakdown

Set up the equation
$$1.0\left(dram\right)={\color{rgb(20,165,174)} x}\left(peck\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(dram\right) = {\color{rgb(89,182,91)} 3.5516328125 \times 10^{-6}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 3.5516328125 \times 10^{-6}\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(peck\right) = {\color{rgb(125,164,120)} 8.80976754172 \times 10^{-3}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 8.80976754172 \times 10^{-3}\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(dram\right)={\color{rgb(20,165,174)} x}\left(peck\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 3.5516328125 \times 10^{-6}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 8.80976754172 \times 10^{-3}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 3.5516328125 \times 10^{-6}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 8.80976754172 \times 10^{-3}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 3.5516328125 \times 10^{-6}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 8.80976754172 \times 10^{-3}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$3.5516328125 \times 10^{-6} = {\color{rgb(20,165,174)} x} \times 8.80976754172 \times 10^{-3}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$3.5516328125 \times {\color{rgb(255,204,153)} \cancelto{10^{-3}}{10^{-6}}} = {\color{rgb(20,165,174)} x} \times 8.80976754172 \times {\color{rgb(255,204,153)} \cancel{10^{-3}}}$$
$$\text{Simplify}$$
$$3.5516328125 \times 10^{-3} = {\color{rgb(20,165,174)} x} \times 8.80976754172$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 8.80976754172 = 3.5516328125 \times 10^{-3}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{8.80976754172}\right)$$
$${\color{rgb(20,165,174)} x} \times 8.80976754172 \times \dfrac{1.0}{8.80976754172} = 3.5516328125 \times 10^{-3} \times \dfrac{1.0}{8.80976754172}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{8.80976754172}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{8.80976754172}}} = 3.5516328125 \times 10^{-3} \times \dfrac{1.0}{8.80976754172}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{3.5516328125 \times 10^{-3}}{8.80976754172}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0004031472\approx4.0315 \times 10^{-4}$$
$$\text{Conversion Equation}$$
$$1.0\left(dram\right)\approx{\color{rgb(20,165,174)} 4.0315 \times 10^{-4}}\left(peck\right)$$