Convert dram to quartern

Learn how to convert 1 dram to quartern step by step.

Calculation Breakdown

Set up the equation
\(1.0\left(dram\right)={\color{rgb(20,165,174)} x}\left(quartern\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(cubic \text{ } meter\right)\)
\(\text{Left side: 1.0 } \left(dram\right) = {\color{rgb(89,182,91)} 3.5516328125 \times 10^{-6}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 3.5516328125 \times 10^{-6}\left(m^{3}\right)}\)
\(\text{Right side: 1.0 } \left(quartern\right) = {\color{rgb(125,164,120)} 2.273045 \times 10^{-3}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 2.273045 \times 10^{-3}\left(m^{3}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(dram\right)={\color{rgb(20,165,174)} x}\left(quartern\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 3.5516328125 \times 10^{-6}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 2.273045 \times 10^{-3}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 3.5516328125 \times 10^{-6}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 2.273045 \times 10^{-3}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 3.5516328125 \times 10^{-6}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 2.273045 \times 10^{-3}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}\)
\(\text{Conversion Equation}\)
\(3.5516328125 \times 10^{-6} = {\color{rgb(20,165,174)} x} \times 2.273045 \times 10^{-3}\)
Cancel factors on both sides
\(\text{Cancel factors}\)
\(3.5516328125 \times {\color{rgb(255,204,153)} \cancelto{10^{-3}}{10^{-6}}} = {\color{rgb(20,165,174)} x} \times 2.273045 \times {\color{rgb(255,204,153)} \cancel{10^{-3}}}\)
\(\text{Simplify}\)
\(3.5516328125 \times 10^{-3} = {\color{rgb(20,165,174)} x} \times 2.273045\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 2.273045 = 3.5516328125 \times 10^{-3}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{2.273045}\right)\)
\({\color{rgb(20,165,174)} x} \times 2.273045 \times \dfrac{1.0}{2.273045} = 3.5516328125 \times 10^{-3} \times \dfrac{1.0}{2.273045}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{2.273045}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{2.273045}}} = 3.5516328125 \times 10^{-3} \times \dfrac{1.0}{2.273045}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{3.5516328125 \times 10^{-3}}{2.273045}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x} = 0.0015625 = 1.5625 \times 10^{-3}\)
\(\text{Conversion Equation}\)
\(1.0\left(dram\right) = {\color{rgb(20,165,174)} 1.5625 \times 10^{-3}}\left(quartern\right)\)

Cookie Policy

PLEASE READ AND ACCEPT OUR COOKIE POLICY.