# Convert dram to quartern

Learn how to convert 1 dram to quartern step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(dram\right)={\color{rgb(20,165,174)} x}\left(quartern\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(dram\right) = {\color{rgb(89,182,91)} 3.6966911953125 \times 10^{-6}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 3.6966911953125 \times 10^{-6}\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(quartern\right) = {\color{rgb(125,164,120)} 2.273045 \times 10^{-3}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 2.273045 \times 10^{-3}\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(dram\right)={\color{rgb(20,165,174)} x}\left(quartern\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 3.6966911953125 \times 10^{-6}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 2.273045 \times 10^{-3}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 3.6966911953125 \times 10^{-6}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 2.273045 \times 10^{-3}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 3.6966911953125 \times 10^{-6}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 2.273045 \times 10^{-3}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$3.6966911953125 \times 10^{-6} = {\color{rgb(20,165,174)} x} \times 2.273045 \times 10^{-3}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$3.6966911953125 \times {\color{rgb(255,204,153)} \cancelto{10^{-3}}{10^{-6}}} = {\color{rgb(20,165,174)} x} \times 2.273045 \times {\color{rgb(255,204,153)} \cancel{10^{-3}}}$$
$$\text{Simplify}$$
$$3.6966911953125 \times 10^{-3} = {\color{rgb(20,165,174)} x} \times 2.273045$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 2.273045 = 3.6966911953125 \times 10^{-3}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{2.273045}\right)$$
$${\color{rgb(20,165,174)} x} \times 2.273045 \times \dfrac{1.0}{2.273045} = 3.6966911953125 \times 10^{-3} \times \dfrac{1.0}{2.273045}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{2.273045}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{2.273045}}} = 3.6966911953125 \times 10^{-3} \times \dfrac{1.0}{2.273045}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{3.6966911953125 \times 10^{-3}}{2.273045}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0016263168\approx1.6263 \times 10^{-3}$$
$$\text{Conversion Equation}$$
$$1.0\left(dram\right)\approx{\color{rgb(20,165,174)} 1.6263 \times 10^{-3}}\left(quartern\right)$$