Convert drop to pint

Learn how to convert 1 drop to pint step by step.

Calculation Breakdown

Set up the equation
$$1.0\left(drop\right)={\color{rgb(20,165,174)} x}\left(pint\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(drop\right) = {\color{rgb(89,182,91)} 8.21486932291667 \times 10^{-8}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 8.21486932291667 \times 10^{-8}\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(pint\right) = {\color{rgb(125,164,120)} 5.506104713575 \times 10^{-4}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 5.506104713575 \times 10^{-4}\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(drop\right)={\color{rgb(20,165,174)} x}\left(pint\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 8.21486932291667 \times 10^{-8}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 5.506104713575 \times 10^{-4}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 8.21486932291667 \times 10^{-8}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 5.506104713575 \times 10^{-4}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 8.21486932291667 \times 10^{-8}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 5.506104713575 \times 10^{-4}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$8.21486932291667 \times 10^{-8} = {\color{rgb(20,165,174)} x} \times 5.506104713575 \times 10^{-4}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$8.21486932291667 \times {\color{rgb(255,204,153)} \cancelto{10^{-4}}{10^{-8}}} = {\color{rgb(20,165,174)} x} \times 5.506104713575 \times {\color{rgb(255,204,153)} \cancel{10^{-4}}}$$
$$\text{Simplify}$$
$$8.21486932291667 \times 10^{-4} = {\color{rgb(20,165,174)} x} \times 5.506104713575$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 5.506104713575 = 8.21486932291667 \times 10^{-4}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{5.506104713575}\right)$$
$${\color{rgb(20,165,174)} x} \times 5.506104713575 \times \dfrac{1.0}{5.506104713575} = 8.21486932291667 \times 10^{-4} \times \dfrac{1.0}{5.506104713575}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{5.506104713575}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{5.506104713575}}} = 8.21486932291667 \times 10^{-4} \times \dfrac{1.0}{5.506104713575}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{8.21486932291667 \times 10^{-4}}{5.506104713575}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0001491957\approx1.492 \times 10^{-4}$$
$$\text{Conversion Equation}$$
$$1.0\left(drop\right)\approx{\color{rgb(20,165,174)} 1.492 \times 10^{-4}}\left(pint\right)$$