# Convert dyne to (gram • meter) / square second

Learn how to convert 1 dyne to (gram • meter) / square second step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(dyne\right)={\color{rgb(20,165,174)} x}\left(\dfrac{gram \times meter}{square \text{ } second}\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(newton\right)$$
$$\text{Left side: 1.0 } \left(dyne\right) = {\color{rgb(89,182,91)} 10^{-5}\left(newton\right)} = {\color{rgb(89,182,91)} 10^{-5}\left(N\right)}$$
$$\text{Right side: 1.0 } \left(\dfrac{gram \times meter}{square \text{ } second}\right) = {\color{rgb(125,164,120)} 10^{-3}\left(newton\right)} = {\color{rgb(125,164,120)} 10^{-3}\left(N\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(dyne\right)={\color{rgb(20,165,174)} x}\left(\dfrac{gram \times meter}{square \text{ } second}\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{-5}} \times {\color{rgb(89,182,91)} \left(newton\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 10^{-3}}} \times {\color{rgb(125,164,120)} \left(newton\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 10^{-5}} \cdot {\color{rgb(89,182,91)} \left(N\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 10^{-3}} \cdot {\color{rgb(125,164,120)} \left(N\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{-5}} \cdot {\color{rgb(89,182,91)} \cancel{\left(N\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 10^{-3}} \times {\color{rgb(125,164,120)} \cancel{\left(N\right)}}$$
$$\text{Conversion Equation}$$
$$10^{-5} = {\color{rgb(20,165,174)} x} \times 10^{-3}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$${\color{rgb(255,204,153)} \cancelto{10^{-2}}{10^{-5}}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{10^{-3}}}$$
$$\text{Simplify}$$
$$10^{-2} = {\color{rgb(20,165,174)} x}$$
Switch sides
$${\color{rgb(20,165,174)} x} = 10^{-2}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 10^{-2}$$
$$\text{Conversion Equation}$$
$$1.0\left(dyne\right) = {\color{rgb(20,165,174)} 10^{-2}}\left(\dfrac{gram \times meter}{square \text{ } second}\right)$$