Convert finger to fathom
Learn how to convert
1
finger to
fathom
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(finger\right)={\color{rgb(20,165,174)} x}\left(fathom\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(meter\right)\)
\(\text{Left side: 1.0 } \left(finger\right) = {\color{rgb(89,182,91)} 2.2225 \times 10^{-2}\left(meter\right)} = {\color{rgb(89,182,91)} 2.2225 \times 10^{-2}\left(m\right)}\)
\(\text{Right side: 1.0 } \left(fathom\right) = {\color{rgb(125,164,120)} 1.8288\left(meter\right)} = {\color{rgb(125,164,120)} 1.8288\left(m\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(finger\right)={\color{rgb(20,165,174)} x}\left(fathom\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 2.2225 \times 10^{-2}} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1.8288}} \times {\color{rgb(125,164,120)} \left(meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 2.2225 \times 10^{-2}} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1.8288} \cdot {\color{rgb(125,164,120)} \left(m\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 2.2225 \times 10^{-2}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1.8288} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}\)
\(\text{Conversion Equation}\)
\(2.2225 \times 10^{-2} = {\color{rgb(20,165,174)} x} \times 1.8288\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 1.8288 = 2.2225 \times 10^{-2}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{1.8288}\right)\)
\({\color{rgb(20,165,174)} x} \times 1.8288 \times \dfrac{1.0}{1.8288} = 2.2225 \times 10^{-2} \times \dfrac{1.0}{1.8288}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{1.8288}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{1.8288}}} = 2.2225 \times 10^{-2} \times \dfrac{1.0}{1.8288}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{2.2225 \times 10^{-2}}{1.8288}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.0121527778\approx1.2153 \times 10^{-2}\)
\(\text{Conversion Equation}\)
\(1.0\left(finger\right)\approx{\color{rgb(20,165,174)} 1.2153 \times 10^{-2}}\left(fathom\right)\)