Convert football field to pace
Learn how to convert
1
football field to
pace
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(football \text{ } field\right)={\color{rgb(20,165,174)} x}\left(pace\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(meter\right)\)
\(\text{Left side: 1.0 } \left(football \text{ } field\right) = {\color{rgb(89,182,91)} 100.584\left(meter\right)} = {\color{rgb(89,182,91)} 100.584\left(m\right)}\)
\(\text{Right side: 1.0 } \left(pace\right) = {\color{rgb(125,164,120)} 1.524\left(meter\right)} = {\color{rgb(125,164,120)} 1.524\left(m\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(football \text{ } field\right)={\color{rgb(20,165,174)} x}\left(pace\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 100.584} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1.524}} \times {\color{rgb(125,164,120)} \left(meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 100.584} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1.524} \cdot {\color{rgb(125,164,120)} \left(m\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 100.584} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1.524} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}\)
\(\text{Conversion Equation}\)
\(100.584 = {\color{rgb(20,165,174)} x} \times 1.524\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 1.524 = 100.584\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{1.524}\right)\)
\({\color{rgb(20,165,174)} x} \times 1.524 \times \dfrac{1.0}{1.524} = 100.584 \times \dfrac{1.0}{1.524}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{1.524}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{1.524}}} = 100.584 \times \dfrac{1.0}{1.524}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{100.584}{1.524}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x} = 66\)
\(\text{Conversion Equation}\)
\(1.0\left(football \text{ } field\right) = {\color{rgb(20,165,174)} 66}\left(pace\right)\)