Convert fun(分) to quintal
Learn how to convert
1
fun(分) to
quintal
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(fun(分)\right)={\color{rgb(20,165,174)} x}\left(quintal\right)\)
Define the base values of the selected units in relation to the SI unit \(\left({\color{rgb(230,179,255)} kilo}gram\right)\)
\(\text{Left side: 1.0 } \left(fun(分)\right) = {\color{rgb(89,182,91)} \dfrac{3.0}{8.0 \times 10^{3}}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} \dfrac{3.0}{8.0 \times 10^{3}}\left({\color{rgb(230,179,255)} k}g\right)}\)
\(\text{Right side: 1.0 } \left(quintal\right) = {\color{rgb(125,164,120)} 45.36\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} 45.36\left({\color{rgb(230,179,255)} k}g\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(fun(分)\right)={\color{rgb(20,165,174)} x}\left(quintal\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{3.0}{8.0 \times 10^{3}}} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 45.36}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} \dfrac{3.0}{8.0 \times 10^{3}}} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 45.36} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{3.0}{8.0 \times 10^{3}}} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 45.36} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}\)
\(\text{Conversion Equation}\)
\(\dfrac{3.0}{8.0 \times 10^{3}} = {\color{rgb(20,165,174)} x} \times 45.36\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 45.36 = \dfrac{3.0}{8.0 \times 10^{3}}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{45.36}\right)\)
\({\color{rgb(20,165,174)} x} \times 45.36 \times \dfrac{1.0}{45.36} = \dfrac{3.0}{8.0 \times 10^{3}} \times \dfrac{1.0}{45.36}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{45.36}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{45.36}}} = \dfrac{3.0 \times 1.0}{8.0 \times 10^{3} \times 45.36}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{3.0}{8.0 \times 10^{3} \times 45.36}\)
Rewrite equation
\(\dfrac{1.0}{10^{3}}\text{ can be rewritten to }10^{-3}\)
\(\text{Rewrite}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{-3} \times 3.0}{8.0 \times 45.36}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.0000082672\approx8.2672 \times 10^{-6}\)
\(\text{Conversion Equation}\)
\(1.0\left(fun(分)\right)\approx{\color{rgb(20,165,174)} 8.2672 \times 10^{-6}}\left(quintal\right)\)