Convert furlong / hour to mile / hour
Learn how to convert
1
furlong / hour to
mile / hour
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(\dfrac{furlong}{hour}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{mile}{hour}\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(\dfrac{meter}{second}\right)\)
\(\text{Left side: 1.0 } \left(\dfrac{furlong}{hour}\right) = {\color{rgb(89,182,91)} \dfrac{201.168}{3.6 \times 10^{3}}\left(\dfrac{meter}{second}\right)} = {\color{rgb(89,182,91)} \dfrac{201.168}{3.6 \times 10^{3}}\left(\dfrac{m}{s}\right)}\)
\(\text{Right side: 1.0 } \left(\dfrac{mile}{hour}\right) = {\color{rgb(125,164,120)} \dfrac{1609.344}{3.6 \times 10^{3}}\left(\dfrac{meter}{second}\right)} = {\color{rgb(125,164,120)} \dfrac{1609.344}{3.6 \times 10^{3}}\left(\dfrac{m}{s}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(\dfrac{furlong}{hour}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{mile}{hour}\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{201.168}{3.6 \times 10^{3}}} \times {\color{rgb(89,182,91)} \left(\dfrac{meter}{second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{1609.344}{3.6 \times 10^{3}}}} \times {\color{rgb(125,164,120)} \left(\dfrac{meter}{second}\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} \dfrac{201.168}{3.6 \times 10^{3}}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m}{s}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{1609.344}{3.6 \times 10^{3}}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m}{s}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{201.168}{3.6 \times 10^{3}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m}{s}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{1609.344}{3.6 \times 10^{3}}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m}{s}\right)}}\)
\(\text{Conversion Equation}\)
\(\dfrac{201.168}{3.6 \times 10^{3}} = {\color{rgb(20,165,174)} x} \times \dfrac{1609.344}{3.6 \times 10^{3}}\)
Cancel factors on both sides
\(\text{Cancel factors}\)
\(\dfrac{201.168}{{\color{rgb(255,204,153)} \cancel{3.6}} \times {\color{rgb(99,194,222)} \cancel{10^{3}}}} = {\color{rgb(20,165,174)} x} \times \dfrac{1609.344}{{\color{rgb(255,204,153)} \cancel{3.6}} \times {\color{rgb(99,194,222)} \cancel{10^{3}}}}\)
\(\text{Simplify}\)
\(201.168 = {\color{rgb(20,165,174)} x} \times 1609.344\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 1609.344 = 201.168\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{1609.344}\right)\)
\({\color{rgb(20,165,174)} x} \times 1609.344 \times \dfrac{1.0}{1609.344} = 201.168 \times \dfrac{1.0}{1609.344}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{1609.344}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{1609.344}}} = 201.168 \times \dfrac{1.0}{1609.344}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{201.168}{1609.344}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x} = 0.125 = 1.25 \times 10^{-1}\)
\(\text{Conversion Equation}\)
\(1.0\left(\dfrac{furlong}{hour}\right) = {\color{rgb(20,165,174)} 1.25 \times 10^{-1}}\left(\dfrac{mile}{hour}\right)\)