Convert furlong / minute to foot / minute
Learn how to convert
1
furlong / minute to
foot / minute
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(\dfrac{furlong}{minute}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{foot}{minute}\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(\dfrac{meter}{second}\right)\)
\(\text{Left side: 1.0 } \left(\dfrac{furlong}{minute}\right) = {\color{rgb(89,182,91)} \dfrac{201.168}{60.0}\left(\dfrac{meter}{second}\right)} = {\color{rgb(89,182,91)} \dfrac{201.168}{60.0}\left(\dfrac{m}{s}\right)}\)
\(\text{Right side: 1.0 } \left(\dfrac{foot}{minute}\right) = {\color{rgb(125,164,120)} \dfrac{3.048 \times 10^{-1}}{60.0}\left(\dfrac{meter}{second}\right)} = {\color{rgb(125,164,120)} \dfrac{3.048 \times 10^{-1}}{60.0}\left(\dfrac{m}{s}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(\dfrac{furlong}{minute}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{foot}{minute}\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{201.168}{60.0}} \times {\color{rgb(89,182,91)} \left(\dfrac{meter}{second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{3.048 \times 10^{-1}}{60.0}}} \times {\color{rgb(125,164,120)} \left(\dfrac{meter}{second}\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} \dfrac{201.168}{60.0}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m}{s}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{3.048 \times 10^{-1}}{60.0}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m}{s}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{201.168}{60.0}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m}{s}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{3.048 \times 10^{-1}}{60.0}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m}{s}\right)}}\)
\(\text{Conversion Equation}\)
\(\dfrac{201.168}{60.0} = {\color{rgb(20,165,174)} x} \times \dfrac{3.048 \times 10^{-1}}{60.0}\)
Cancel factors on both sides
\(\text{Cancel factors}\)
\(\dfrac{201.168}{{\color{rgb(255,204,153)} \cancel{60.0}}} = {\color{rgb(20,165,174)} x} \times \dfrac{3.048 \times 10^{-1}}{{\color{rgb(255,204,153)} \cancel{60.0}}}\)
\(\text{Simplify}\)
\(201.168 = {\color{rgb(20,165,174)} x} \times 3.048 \times 10^{-1}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 3.048 \times 10^{-1} = 201.168\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{3.048 \times 10^{-1}}\right)\)
\({\color{rgb(20,165,174)} x} \times 3.048 \times 10^{-1} \times \dfrac{1.0}{3.048 \times 10^{-1}} = 201.168 \times \dfrac{1.0}{3.048 \times 10^{-1}}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{3.048}} \times {\color{rgb(99,194,222)} \cancel{10^{-1}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{3.048}} \times {\color{rgb(99,194,222)} \cancel{10^{-1}}}} = 201.168 \times \dfrac{1.0}{3.048 \times 10^{-1}}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{201.168}{3.048 \times 10^{-1}}\)
Rewrite equation
\(\dfrac{1.0}{10^{-1}}\text{ can be rewritten to }10\)
\(\text{Rewrite}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10.0 \times 201.168}{3.048}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x} = 660 = 6.6 \times 10^{2}\)
\(\text{Conversion Equation}\)
\(1.0\left(\dfrac{furlong}{minute}\right) = {\color{rgb(20,165,174)} 6.6 \times 10^{2}}\left(\dfrac{foot}{minute}\right)\)