Convert furlong / minute to yard / minute

Learn how to convert 1 furlong / minute to yard / minute step by step.

Calculation Breakdown

Set up the equation
\(1.0\left(\dfrac{furlong}{minute}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{yard}{minute}\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(\dfrac{meter}{second}\right)\)
\(\text{Left side: 1.0 } \left(\dfrac{furlong}{minute}\right) = {\color{rgb(89,182,91)} \dfrac{201.168}{60.0}\left(\dfrac{meter}{second}\right)} = {\color{rgb(89,182,91)} \dfrac{201.168}{60.0}\left(\dfrac{m}{s}\right)}\)
\(\text{Right side: 1.0 } \left(\dfrac{yard}{minute}\right) = {\color{rgb(125,164,120)} \dfrac{0.9144}{60.0}\left(\dfrac{meter}{second}\right)} = {\color{rgb(125,164,120)} \dfrac{0.9144}{60.0}\left(\dfrac{m}{s}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(\dfrac{furlong}{minute}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{yard}{minute}\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{201.168}{60.0}} \times {\color{rgb(89,182,91)} \left(\dfrac{meter}{second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{0.9144}{60.0}}} \times {\color{rgb(125,164,120)} \left(\dfrac{meter}{second}\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} \dfrac{201.168}{60.0}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m}{s}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{0.9144}{60.0}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m}{s}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{201.168}{60.0}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m}{s}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{0.9144}{60.0}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m}{s}\right)}}\)
\(\text{Conversion Equation}\)
\(\dfrac{201.168}{60.0} = {\color{rgb(20,165,174)} x} \times \dfrac{0.9144}{60.0}\)
Cancel factors on both sides
\(\text{Cancel factors}\)
\(\dfrac{201.168}{{\color{rgb(255,204,153)} \cancel{60.0}}} = {\color{rgb(20,165,174)} x} \times \dfrac{0.9144}{{\color{rgb(255,204,153)} \cancel{60.0}}}\)
\(\text{Simplify}\)
\(201.168 = {\color{rgb(20,165,174)} x} \times 0.9144\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 0.9144 = 201.168\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{0.9144}\right)\)
\({\color{rgb(20,165,174)} x} \times 0.9144 \times \dfrac{1.0}{0.9144} = 201.168 \times \dfrac{1.0}{0.9144}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{0.9144}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{0.9144}}} = 201.168 \times \dfrac{1.0}{0.9144}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{201.168}{0.9144}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x} = 220 = 2.2 \times 10^{2}\)
\(\text{Conversion Equation}\)
\(1.0\left(\dfrac{furlong}{minute}\right) = {\color{rgb(20,165,174)} 2.2 \times 10^{2}}\left(\dfrac{yard}{minute}\right)\)

Cookie Policy

PLEASE READ AND ACCEPT OUR COOKIE POLICY.