Convert g units to knot / hour
Learn how to convert
1
g units to
knot / hour
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(g \text{ } units\right)={\color{rgb(20,165,174)} x}\left(\dfrac{knot}{hour}\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(\dfrac{meter}{square \text{ } second}\right)\)
\(\text{Left side: 1.0 } \left(g \text{ } units\right) = {\color{rgb(89,182,91)} 9.80665\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(89,182,91)} 9.80665\left(\dfrac{m}{s^{2}}\right)}\)
\(\text{Right side: 1.0 } \left(\dfrac{knot}{hour}\right) = {\color{rgb(125,164,120)} \dfrac{50.93}{3.564 \times 10^{5}}\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(125,164,120)} \dfrac{50.93}{3.564 \times 10^{5}}\left(\dfrac{m}{s^{2}}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(g \text{ } units\right)={\color{rgb(20,165,174)} x}\left(\dfrac{knot}{hour}\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 9.80665} \times {\color{rgb(89,182,91)} \left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{50.93}{3.564 \times 10^{5}}}} \times {\color{rgb(125,164,120)} \left(\dfrac{meter}{square \text{ } second}\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 9.80665} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m}{s^{2}}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{50.93}{3.564 \times 10^{5}}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m}{s^{2}}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 9.80665} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m}{s^{2}}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{50.93}{3.564 \times 10^{5}}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m}{s^{2}}\right)}}\)
\(\text{Conversion Equation}\)
\(9.80665 = {\color{rgb(20,165,174)} x} \times \dfrac{50.93}{3.564 \times 10^{5}}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times \dfrac{50.93}{3.564 \times 10^{5}} = 9.80665\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{3.564 \times 10^{5}}{50.93}\right)\)
\({\color{rgb(20,165,174)} x} \times \dfrac{50.93}{3.564 \times 10^{5}} \times \dfrac{3.564 \times 10^{5}}{50.93} = 9.80665 \times \dfrac{3.564 \times 10^{5}}{50.93}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{50.93}} \times {\color{rgb(99,194,222)} \cancel{3.564}} \times {\color{rgb(166,218,227)} \cancel{10^{5}}}}{{\color{rgb(99,194,222)} \cancel{3.564}} \times {\color{rgb(166,218,227)} \cancel{10^{5}}} \times {\color{rgb(255,204,153)} \cancel{50.93}}} = 9.80665 \times \dfrac{3.564 \times 10^{5}}{50.93}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{9.80665 \times 3.564 \times 10^{5}}{50.93}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx68625.36933\approx6.8625 \times 10^{4}\)
\(\text{Conversion Equation}\)
\(1.0\left(g \text{ } units\right)\approx{\color{rgb(20,165,174)} 6.8625 \times 10^{4}}\left(\dfrac{knot}{hour}\right)\)