# Convert galileo to inch / square hour

Learn how to convert 1 galileo to inch / square hour step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(galileo\right)={\color{rgb(20,165,174)} x}\left(\dfrac{inch}{square \text{ } hour}\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(\dfrac{meter}{square \text{ } second}\right)$$
$$\text{Left side: 1.0 } \left(galileo\right) = {\color{rgb(89,182,91)} 10^{-2}\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(89,182,91)} 10^{-2}\left(\dfrac{m}{s^{2}}\right)}$$
$$\text{Right side: 1.0 } \left(\dfrac{inch}{square \text{ } hour}\right) = {\color{rgb(125,164,120)} \dfrac{2.54 \times 10^{-2}}{1.296 \times 10^{7}}\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(125,164,120)} \dfrac{2.54 \times 10^{-2}}{1.296 \times 10^{7}}\left(\dfrac{m}{s^{2}}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(galileo\right)={\color{rgb(20,165,174)} x}\left(\dfrac{inch}{square \text{ } hour}\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{-2}} \times {\color{rgb(89,182,91)} \left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{2.54 \times 10^{-2}}{1.296 \times 10^{7}}}} \times {\color{rgb(125,164,120)} \left(\dfrac{meter}{square \text{ } second}\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 10^{-2}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m}{s^{2}}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{2.54 \times 10^{-2}}{1.296 \times 10^{7}}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m}{s^{2}}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{-2}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m}{s^{2}}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{2.54 \times 10^{-2}}{1.296 \times 10^{7}}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m}{s^{2}}\right)}}$$
$$\text{Conversion Equation}$$
$$10^{-2} = {\color{rgb(20,165,174)} x} \times \dfrac{2.54 \times 10^{-2}}{1.296 \times 10^{7}}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$${\color{rgb(255,204,153)} \cancel{10^{-2}}} = {\color{rgb(20,165,174)} x} \times \dfrac{2.54 \times {\color{rgb(255,204,153)} \cancel{10^{-2}}}}{1.296 \times 10^{7}}$$
$$\text{Simplify}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times \dfrac{2.54}{1.296 \times 10^{7}}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times \dfrac{2.54}{1.296 \times 10^{7}} = 1.0$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.296 \times 10^{7}}{2.54}\right)$$
$${\color{rgb(20,165,174)} x} \times \dfrac{2.54}{1.296 \times 10^{7}} \times \dfrac{1.296 \times 10^{7}}{2.54} = \times \dfrac{1.296 \times 10^{7}}{2.54}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{2.54}} \times {\color{rgb(99,194,222)} \cancel{1.296}} \times {\color{rgb(166,218,227)} \cancel{10^{7}}}}{{\color{rgb(99,194,222)} \cancel{1.296}} \times {\color{rgb(166,218,227)} \cancel{10^{7}}} \times {\color{rgb(255,204,153)} \cancel{2.54}}} = \dfrac{1.296 \times 10^{7}}{2.54}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.296 \times 10^{7}}{2.54}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx5102362.2047\approx5.1024 \times 10^{6}$$
$$\text{Conversion Equation}$$
$$1.0\left(galileo\right)\approx{\color{rgb(20,165,174)} 5.1024 \times 10^{6}}\left(\dfrac{inch}{square \text{ } hour}\right)$$