# Convert gallon / second to gill / second

Learn how to convert 1 gallon / second to gill / second step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(\dfrac{gallon}{second}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{gill}{second}\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(\dfrac{cubic \text{ } meter}{second}\right)$$
$$\text{Left side: 1.0 } \left(\dfrac{gallon}{second}\right) = {\color{rgb(89,182,91)} 4.40488377086 \times 10^{-3}\left(\dfrac{cubic \text{ } meter}{second}\right)} = {\color{rgb(89,182,91)} 4.40488377086 \times 10^{-3}\left(\dfrac{m^{3}}{s}\right)}$$
$$\text{Right side: 1.0 } \left(\dfrac{gill}{second}\right) = {\color{rgb(125,164,120)} 1.1829411825 \times 10^{-4}\left(\dfrac{cubic \text{ } meter}{second}\right)} = {\color{rgb(125,164,120)} 1.1829411825 \times 10^{-4}\left(\dfrac{m^{3}}{s}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(\dfrac{gallon}{second}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{gill}{second}\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 4.40488377086 \times 10^{-3}} \times {\color{rgb(89,182,91)} \left(\dfrac{cubic \text{ } meter}{second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1.1829411825 \times 10^{-4}}} \times {\color{rgb(125,164,120)} \left(\dfrac{cubic \text{ } meter}{second}\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 4.40488377086 \times 10^{-3}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m^{3}}{s}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1.1829411825 \times 10^{-4}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m^{3}}{s}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 4.40488377086 \times 10^{-3}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m^{3}}{s}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1.1829411825 \times 10^{-4}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m^{3}}{s}\right)}}$$
$$\text{Conversion Equation}$$
$$4.40488377086 \times 10^{-3} = {\color{rgb(20,165,174)} x} \times 1.1829411825 \times 10^{-4}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$4.40488377086 \times {\color{rgb(255,204,153)} \cancel{10^{-3}}} = {\color{rgb(20,165,174)} x} \times 1.1829411825 \times {\color{rgb(255,204,153)} \cancelto{10^{-1}}{10^{-4}}}$$
$$\text{Simplify}$$
$$4.40488377086 = {\color{rgb(20,165,174)} x} \times 1.1829411825 \times 10^{-1}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 1.1829411825 \times 10^{-1} = 4.40488377086$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{1.1829411825 \times 10^{-1}}\right)$$
$${\color{rgb(20,165,174)} x} \times 1.1829411825 \times 10^{-1} \times \dfrac{1.0}{1.1829411825 \times 10^{-1}} = 4.40488377086 \times \dfrac{1.0}{1.1829411825 \times 10^{-1}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{1.1829411825}} \times {\color{rgb(99,194,222)} \cancel{10^{-1}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{1.1829411825}} \times {\color{rgb(99,194,222)} \cancel{10^{-1}}}} = 4.40488377086 \times \dfrac{1.0}{1.1829411825 \times 10^{-1}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{4.40488377086}{1.1829411825 \times 10^{-1}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-1}}\text{ can be rewritten to }10$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10.0 \times 4.40488377086}{1.1829411825}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx37.236709957\approx37.2367$$
$$\text{Conversion Equation}$$
$$1.0\left(\dfrac{gallon}{second}\right)\approx{\color{rgb(20,165,174)} 37.2367}\left(\dfrac{gill}{second}\right)$$