Convert ge(合) to bucket
Learn how to convert
1
ge(合) to
bucket
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(ge(合)\right)={\color{rgb(20,165,174)} x}\left(bucket\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(cubic \text{ } meter\right)\)
\(\text{Left side: 1.0 } \left(ge(合)\right) = {\color{rgb(89,182,91)} 10^{-4}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 10^{-4}\left(m^{3}\right)}\)
\(\text{Right side: 1.0 } \left(bucket\right) = {\color{rgb(125,164,120)} 1.818436 \times 10^{-2}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 1.818436 \times 10^{-2}\left(m^{3}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(ge(合)\right)={\color{rgb(20,165,174)} x}\left(bucket\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 10^{-4}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1.818436 \times 10^{-2}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 10^{-4}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1.818436 \times 10^{-2}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 10^{-4}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1.818436 \times 10^{-2}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}\)
\(\text{Conversion Equation}\)
\(10^{-4} = {\color{rgb(20,165,174)} x} \times 1.818436 \times 10^{-2}\)
Cancel factors on both sides
\(\text{Cancel factors}\)
\({\color{rgb(255,204,153)} \cancelto{10^{-2}}{10^{-4}}} = {\color{rgb(20,165,174)} x} \times 1.818436 \times {\color{rgb(255,204,153)} \cancel{10^{-2}}}\)
\(\text{Simplify}\)
\(10^{-2} = {\color{rgb(20,165,174)} x} \times 1.818436\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 1.818436 = 10^{-2}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{1.818436}\right)\)
\({\color{rgb(20,165,174)} x} \times 1.818436 \times \dfrac{1.0}{1.818436} = 10^{-2} \times \dfrac{1.0}{1.818436}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{1.818436}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{1.818436}}} = 10^{-2} \times \dfrac{1.0}{1.818436}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{-2}}{1.818436}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.0054992312\approx5.4992 \times 10^{-3}\)
\(\text{Conversion Equation}\)
\(1.0\left(ge(合)\right)\approx{\color{rgb(20,165,174)} 5.4992 \times 10^{-3}}\left(bucket\right)\)