Convert ge(合) to quarter
Learn how to convert
1
ge(合) to
quarter
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(ge(合)\right)={\color{rgb(20,165,174)} x}\left(quarter\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(cubic \text{ } meter\right)\)
\(\text{Left side: 1.0 } \left(ge(合)\right) = {\color{rgb(89,182,91)} 10^{-4}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 10^{-4}\left(m^{3}\right)}\)
\(\text{Right side: 1.0 } \left(quarter\right) = {\color{rgb(125,164,120)} 2.9094976 \times 10^{-1}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 2.9094976 \times 10^{-1}\left(m^{3}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(ge(合)\right)={\color{rgb(20,165,174)} x}\left(quarter\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 10^{-4}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 2.9094976 \times 10^{-1}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 10^{-4}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 2.9094976 \times 10^{-1}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 10^{-4}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 2.9094976 \times 10^{-1}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}\)
\(\text{Conversion Equation}\)
\(10^{-4} = {\color{rgb(20,165,174)} x} \times 2.9094976 \times 10^{-1}\)
Cancel factors on both sides
\(\text{Cancel factors}\)
\({\color{rgb(255,204,153)} \cancelto{10^{-3}}{10^{-4}}} = {\color{rgb(20,165,174)} x} \times 2.9094976 \times {\color{rgb(255,204,153)} \cancel{10^{-1}}}\)
\(\text{Simplify}\)
\(10^{-3} = {\color{rgb(20,165,174)} x} \times 2.9094976\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 2.9094976 = 10^{-3}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{2.9094976}\right)\)
\({\color{rgb(20,165,174)} x} \times 2.9094976 \times \dfrac{1.0}{2.9094976} = 10^{-3} \times \dfrac{1.0}{2.9094976}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{2.9094976}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{2.9094976}}} = 10^{-3} \times \dfrac{1.0}{2.9094976}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{-3}}{2.9094976}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.000343702\approx3.437 \times 10^{-4}\)
\(\text{Conversion Equation}\)
\(1.0\left(ge(合)\right)\approx{\color{rgb(20,165,174)} 3.437 \times 10^{-4}}\left(quarter\right)\)