# Convert gradian to binary degree

Learn how to convert 1 gradian to binary degree step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(gradian\right)={\color{rgb(20,165,174)} x}\left(binary \text{ } degree\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(radian\right)$$
$$\text{Left side: 1.0 } \left(gradian\right) = {\color{rgb(89,182,91)} \dfrac{π}{2.0 \times 10^{2}}\left(radian\right)} = {\color{rgb(89,182,91)} \dfrac{π}{2.0 \times 10^{2}}\left(rad\right)}$$
$$\text{Right side: 1.0 } \left(binary \text{ } degree\right) = {\color{rgb(125,164,120)} \dfrac{π}{128.0}\left(radian\right)} = {\color{rgb(125,164,120)} \dfrac{π}{128.0}\left(rad\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(gradian\right)={\color{rgb(20,165,174)} x}\left(binary \text{ } degree\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{π}{2.0 \times 10^{2}}} \times {\color{rgb(89,182,91)} \left(radian\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{π}{128.0}}} \times {\color{rgb(125,164,120)} \left(radian\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{π}{2.0 \times 10^{2}}} \cdot {\color{rgb(89,182,91)} \left(rad\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{π}{128.0}} \cdot {\color{rgb(125,164,120)} \left(rad\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{π}{2.0 \times 10^{2}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(rad\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{π}{128.0}} \times {\color{rgb(125,164,120)} \cancel{\left(rad\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{π}{2.0 \times 10^{2}} = {\color{rgb(20,165,174)} x} \times \dfrac{π}{128.0}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$\dfrac{{\color{rgb(255,204,153)} \cancel{π}}}{2.0 \times 10^{2}} = {\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{π}}}{128.0}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times \dfrac{1.0}{128.0} = \dfrac{1.0}{2.0 \times 10^{2}}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{128.0}{1.0}\right)$$
$${\color{rgb(20,165,174)} x} \times \dfrac{1.0}{128.0} \times \dfrac{128.0}{1.0} = \dfrac{1.0}{2.0 \times 10^{2}} \times \dfrac{128.0}{1.0}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}} \times {\color{rgb(99,194,222)} \cancel{128.0}}}{{\color{rgb(99,194,222)} \cancel{128.0}} \times {\color{rgb(255,204,153)} \cancel{1.0}}} = \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}} \times 128.0}{2.0 \times 10^{2} \times {\color{rgb(255,204,153)} \cancel{1.0}}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{128.0}{2.0 \times 10^{2}}$$
Rewrite equation
$$\dfrac{1.0}{10^{2}}\text{ can be rewritten to }10^{-2}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{-2} \times 128.0}{2.0}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 0.64 = 6.4 \times 10^{-1}$$
$$\text{Conversion Equation}$$
$$1.0\left(gradian\right) = {\color{rgb(20,165,174)} 6.4 \times 10^{-1}}\left(binary \text{ } degree\right)$$