Convert grain to hyakume(百目)
Learn how to convert
1
grain to
hyakume(百目)
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(grain\right)={\color{rgb(20,165,174)} x}\left(hyakume(百目)\right)\)
Define the base values of the selected units in relation to the SI unit \(\left({\color{rgb(230,179,255)} kilo}gram\right)\)
\(\text{Left side: 1.0 } \left(grain\right) = {\color{rgb(89,182,91)} 6.479891 \times 10^{-5}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} 6.479891 \times 10^{-5}\left({\color{rgb(230,179,255)} k}g\right)}\)
\(\text{Right side: 1.0 } \left(hyakume(百目)\right) = {\color{rgb(125,164,120)} \dfrac{3.0}{8.0}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} \dfrac{3.0}{8.0}\left({\color{rgb(230,179,255)} k}g\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(grain\right)={\color{rgb(20,165,174)} x}\left(hyakume(百目)\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 6.479891 \times 10^{-5}} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{3.0}{8.0}}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 6.479891 \times 10^{-5}} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{3.0}{8.0}} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 6.479891 \times 10^{-5}} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{3.0}{8.0}} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}\)
\(\text{Conversion Equation}\)
\(6.479891 \times 10^{-5} = {\color{rgb(20,165,174)} x} \times \dfrac{3.0}{8.0}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times \dfrac{3.0}{8.0} = 6.479891 \times 10^{-5}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{8.0}{3.0}\right)\)
\({\color{rgb(20,165,174)} x} \times \dfrac{3.0}{8.0} \times \dfrac{8.0}{3.0} = 6.479891 \times 10^{-5} \times \dfrac{8.0}{3.0}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{3.0}} \times {\color{rgb(99,194,222)} \cancel{8.0}}}{{\color{rgb(99,194,222)} \cancel{8.0}} \times {\color{rgb(255,204,153)} \cancel{3.0}}} = 6.479891 \times 10^{-5} \times \dfrac{8.0}{3.0}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{6.479891 \times 10^{-5} \times 8.0}{3.0}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.0001727971\approx1.728 \times 10^{-4}\)
\(\text{Conversion Equation}\)
\(1.0\left(grain\right)\approx{\color{rgb(20,165,174)} 1.728 \times 10^{-4}}\left(hyakume(百目)\right)\)