Convert gram-force • inch to pound-force • foot

Learn how to convert 1 gram-force • inch to pound-force • foot step by step.

Calculation Breakdown

Set up the equation
$$1.0\left(gram-force \times inch\right)={\color{rgb(20,165,174)} x}\left(pound-force \times foot\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(newton \times meter\right)$$
$$\text{Left side: 1.0 } \left(gram-force \times inch\right) = {\color{rgb(89,182,91)} 2.4908891 \times 10^{-4}\left(newton \times meter\right)} = {\color{rgb(89,182,91)} 2.4908891 \times 10^{-4}\left(N \cdot m\right)}$$
$$\text{Right side: 1.0 } \left(pound-force \times foot\right) = {\color{rgb(125,164,120)} 1.3558179483314\left(newton \times meter\right)} = {\color{rgb(125,164,120)} 1.3558179483314\left(N \cdot m\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(gram-force \times inch\right)={\color{rgb(20,165,174)} x}\left(pound-force \times foot\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 2.4908891 \times 10^{-4}} \times {\color{rgb(89,182,91)} \left(newton \times meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1.3558179483314}} \times {\color{rgb(125,164,120)} \left(newton \times meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 2.4908891 \times 10^{-4}} \cdot {\color{rgb(89,182,91)} \left(N \cdot m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1.3558179483314} \cdot {\color{rgb(125,164,120)} \left(N \cdot m\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 2.4908891 \times 10^{-4}} \cdot {\color{rgb(89,182,91)} \cancel{\left(N \cdot m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1.3558179483314} \times {\color{rgb(125,164,120)} \cancel{\left(N \cdot m\right)}}$$
$$\text{Conversion Equation}$$
$$2.4908891 \times 10^{-4} = {\color{rgb(20,165,174)} x} \times 1.3558179483314$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 1.3558179483314 = 2.4908891 \times 10^{-4}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{1.3558179483314}\right)$$
$${\color{rgb(20,165,174)} x} \times 1.3558179483314 \times \dfrac{1.0}{1.3558179483314} = 2.4908891 \times 10^{-4} \times \dfrac{1.0}{1.3558179483314}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{1.3558179483314}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{1.3558179483314}}} = 2.4908891 \times 10^{-4} \times \dfrac{1.0}{1.3558179483314}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{2.4908891 \times 10^{-4}}{1.3558179483314}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0001837186\approx1.8372 \times 10^{-4}$$
$$\text{Conversion Equation}$$
$$1.0\left(gram-force \times inch\right)\approx{\color{rgb(20,165,174)} 1.8372 \times 10^{-4}}\left(pound-force \times foot\right)$$