Convert hao(毫) to jo(丈)

Learn how to convert 1 hao(毫) to jo(丈) step by step.

Calculation Breakdown

Set up the equation
\(1.0\left(hao(毫)\right)={\color{rgb(20,165,174)} x}\left(jo(丈)\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(meter\right)\)
\(\text{Left side: 1.0 } \left(hao(毫)\right) = {\color{rgb(89,182,91)} \dfrac{1.0}{3.0 \times 10^{4}}\left(meter\right)} = {\color{rgb(89,182,91)} \dfrac{1.0}{3.0 \times 10^{4}}\left(m\right)}\)
\(\text{Right side: 1.0 } \left(jo(丈)\right) = {\color{rgb(125,164,120)} \dfrac{10^{2}}{33.0}\left(meter\right)} = {\color{rgb(125,164,120)} \dfrac{10^{2}}{33.0}\left(m\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(hao(毫)\right)={\color{rgb(20,165,174)} x}\left(jo(丈)\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{1.0}{3.0 \times 10^{4}}} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{10^{2}}{33.0}}} \times {\color{rgb(125,164,120)} \left(meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} \dfrac{1.0}{3.0 \times 10^{4}}} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{10^{2}}{33.0}} \cdot {\color{rgb(125,164,120)} \left(m\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{1.0}{3.0 \times 10^{4}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{10^{2}}{33.0}} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}\)
\(\text{Conversion Equation}\)
\(\dfrac{1.0}{3.0 \times 10^{4}} = {\color{rgb(20,165,174)} x} \times \dfrac{10^{2}}{33.0}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times \dfrac{10^{2}}{33.0} = \dfrac{1.0}{3.0 \times 10^{4}}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{33.0}{10^{2}}\right)\)
\({\color{rgb(20,165,174)} x} \times \dfrac{10^{2}}{33.0} \times \dfrac{33.0}{10^{2}} = \dfrac{1.0}{3.0 \times 10^{4}} \times \dfrac{33.0}{10^{2}}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{10^{2}}} \times {\color{rgb(99,194,222)} \cancel{33.0}}}{{\color{rgb(99,194,222)} \cancel{33.0}} \times {\color{rgb(255,204,153)} \cancel{10^{2}}}} = \dfrac{1.0 \times 33.0}{3.0 \times 10^{4} \times 10^{2}}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{33.0}{3.0 \times 10^{4} \times 10^{2}}\)
Rewrite equation
\(\dfrac{1.0}{10^{4}}\text{ can be rewritten to }10^{-4}\)
\(\dfrac{1.0}{10^{2}}\text{ can be rewritten to }10^{-2}\)
\(\text{Rewrite}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{-4} \times 10^{-2} \times 33.0}{3.0}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{-6} \times 33.0}{3.0}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x} = 1.1 \times 10^{-5}\)
\(\text{Conversion Equation}\)
\(1.0\left(hao(毫)\right) = {\color{rgb(20,165,174)} 1.1 \times 10^{-5}}\left(jo(丈)\right)\)

Cookie Policy

PLEASE READ AND ACCEPT OUR COOKIE POLICY.