Convert inch / (hour • minute) to galileo
Learn how to convert
1
inch / (hour • minute) to
galileo
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(\dfrac{inch}{hour \times minute}\right)={\color{rgb(20,165,174)} x}\left(galileo\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(\dfrac{meter}{square \text{ } second}\right)\)
\(\text{Left side: 1.0 } \left(\dfrac{inch}{hour \times minute}\right) = {\color{rgb(89,182,91)} \dfrac{0.0254}{2.16 \times 10^{5}}\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(89,182,91)} \dfrac{0.0254}{2.16 \times 10^{5}}\left(\dfrac{m}{s^{2}}\right)}\)
\(\text{Right side: 1.0 } \left(galileo\right) = {\color{rgb(125,164,120)} 10^{-2}\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(125,164,120)} 10^{-2}\left(\dfrac{m}{s^{2}}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(\dfrac{inch}{hour \times minute}\right)={\color{rgb(20,165,174)} x}\left(galileo\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{0.0254}{2.16 \times 10^{5}}} \times {\color{rgb(89,182,91)} \left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 10^{-2}}} \times {\color{rgb(125,164,120)} \left(\dfrac{meter}{square \text{ } second}\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} \dfrac{0.0254}{2.16 \times 10^{5}}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m}{s^{2}}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 10^{-2}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m}{s^{2}}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{0.0254}{2.16 \times 10^{5}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m}{s^{2}}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 10^{-2}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m}{s^{2}}\right)}}\)
\(\text{Conversion Equation}\)
\(\dfrac{0.0254}{2.16 \times 10^{5}} = {\color{rgb(20,165,174)} x} \times 10^{-2}\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 10^{-2} = \dfrac{0.0254}{2.16 \times 10^{5}}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{10^{-2}}\right)\)
\({\color{rgb(20,165,174)} x} \times 10^{-2} \times \dfrac{1.0}{10^{-2}} = \dfrac{0.0254}{2.16 \times 10^{5}} \times \dfrac{1.0}{10^{-2}}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{10^{-2}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{10^{-2}}}} = \dfrac{0.0254 \times 1.0}{2.16 \times {\color{rgb(255,204,153)} \cancelto{10^{3}}{10^{5}}} \times {\color{rgb(255,204,153)} \cancel{10^{-2}}}}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{0.0254}{2.16 \times 10^{3}}\)
Rewrite equation
\(\dfrac{1.0}{10^{3}}\text{ can be rewritten to }10^{-3}\)
\(\text{Rewrite}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{-3} \times 0.0254}{2.16}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.0000117593\approx1.1759 \times 10^{-5}\)
\(\text{Conversion Equation}\)
\(1.0\left(\dfrac{inch}{hour \times minute}\right)\approx{\color{rgb(20,165,174)} 1.1759 \times 10^{-5}}\left(galileo\right)\)