# Convert inch / second to foot / minute

Learn how to convert 1 inch / second to foot / minute step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(\dfrac{inch}{second}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{foot}{minute}\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(\dfrac{meter}{second}\right)$$
$$\text{Left side: 1.0 } \left(\dfrac{inch}{second}\right) = {\color{rgb(89,182,91)} 2.54 \times 10^{-2}\left(\dfrac{meter}{second}\right)} = {\color{rgb(89,182,91)} 2.54 \times 10^{-2}\left(\dfrac{m}{s}\right)}$$
$$\text{Right side: 1.0 } \left(\dfrac{foot}{minute}\right) = {\color{rgb(125,164,120)} \dfrac{3.048 \times 10^{-1}}{60.0}\left(\dfrac{meter}{second}\right)} = {\color{rgb(125,164,120)} \dfrac{3.048 \times 10^{-1}}{60.0}\left(\dfrac{m}{s}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(\dfrac{inch}{second}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{foot}{minute}\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 2.54 \times 10^{-2}} \times {\color{rgb(89,182,91)} \left(\dfrac{meter}{second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{3.048 \times 10^{-1}}{60.0}}} \times {\color{rgb(125,164,120)} \left(\dfrac{meter}{second}\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 2.54 \times 10^{-2}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m}{s}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{3.048 \times 10^{-1}}{60.0}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m}{s}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 2.54 \times 10^{-2}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m}{s}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{3.048 \times 10^{-1}}{60.0}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m}{s}\right)}}$$
$$\text{Conversion Equation}$$
$$2.54 \times 10^{-2} = {\color{rgb(20,165,174)} x} \times \dfrac{3.048 \times 10^{-1}}{60.0}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$2.54 \times {\color{rgb(255,204,153)} \cancelto{10^{-1}}{10^{-2}}} = {\color{rgb(20,165,174)} x} \times \dfrac{3.048 \times {\color{rgb(255,204,153)} \cancel{10^{-1}}}}{60.0}$$
$$\text{Simplify}$$
$$2.54 \times 10^{-1} = {\color{rgb(20,165,174)} x} \times \dfrac{3.048}{60.0}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times \dfrac{3.048}{60.0} = 2.54 \times 10^{-1}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{60.0}{3.048}\right)$$
$${\color{rgb(20,165,174)} x} \times \dfrac{3.048}{60.0} \times \dfrac{60.0}{3.048} = 2.54 \times 10^{-1} \times \dfrac{60.0}{3.048}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{3.048}} \times {\color{rgb(99,194,222)} \cancel{60.0}}}{{\color{rgb(99,194,222)} \cancel{60.0}} \times {\color{rgb(255,204,153)} \cancel{3.048}}} = 2.54 \times 10^{-1} \times \dfrac{60.0}{3.048}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{2.54 \times 10^{-1} \times 60.0}{3.048}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 5$$
$$\text{Conversion Equation}$$
$$1.0\left(\dfrac{inch}{second}\right) = {\color{rgb(20,165,174)} 5}\left(\dfrac{foot}{minute}\right)$$