# Convert jo to fang zhang(方丈)

Learn how to convert 1 jo to fang zhang(方丈) step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(jo\right)={\color{rgb(20,165,174)} x}\left(fang \text{ } zhang(方丈)\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(square \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(jo\right) = {\color{rgb(89,182,91)} \dfrac{2.0 \times 10^{2}}{121.0}\left(square \text{ } meter\right)} = {\color{rgb(89,182,91)} \dfrac{2.0 \times 10^{2}}{121.0}\left(m^{2}\right)}$$
$$\text{Right side: 1.0 } \left(fang \text{ } zhang(方丈)\right) = {\color{rgb(125,164,120)} \dfrac{10^{2}}{9.0}\left(square \text{ } meter\right)} = {\color{rgb(125,164,120)} \dfrac{10^{2}}{9.0}\left(m^{2}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(jo\right)={\color{rgb(20,165,174)} x}\left(fang \text{ } zhang(方丈)\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{2.0 \times 10^{2}}{121.0}} \times {\color{rgb(89,182,91)} \left(square \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{10^{2}}{9.0}}} \times {\color{rgb(125,164,120)} \left(square \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{2.0 \times 10^{2}}{121.0}} \cdot {\color{rgb(89,182,91)} \left(m^{2}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{10^{2}}{9.0}} \cdot {\color{rgb(125,164,120)} \left(m^{2}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{2.0 \times 10^{2}}{121.0}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{2}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{10^{2}}{9.0}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{2}\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{2.0 \times 10^{2}}{121.0} = {\color{rgb(20,165,174)} x} \times \dfrac{10^{2}}{9.0}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$\dfrac{2.0 \times {\color{rgb(255,204,153)} \cancel{10^{2}}}}{121.0} = {\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{10^{2}}}}{9.0}$$
$$\text{Simplify}$$
$$\dfrac{2.0}{121.0} = {\color{rgb(20,165,174)} x} \times \dfrac{1.0}{9.0}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times \dfrac{1.0}{9.0} = \dfrac{2.0}{121.0}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{9.0}{1.0}\right)$$
$${\color{rgb(20,165,174)} x} \times \dfrac{1.0}{9.0} \times \dfrac{9.0}{1.0} = \dfrac{2.0}{121.0} \times \dfrac{9.0}{1.0}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}} \times {\color{rgb(99,194,222)} \cancel{9.0}}}{{\color{rgb(99,194,222)} \cancel{9.0}} \times {\color{rgb(255,204,153)} \cancel{1.0}}} = \dfrac{2.0 \times 9.0}{121.0 \times 1.0}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{2.0 \times 9.0}{121.0}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.1487603306\approx1.4876 \times 10^{-1}$$
$$\text{Conversion Equation}$$
$$1.0\left(jo\right)\approx{\color{rgb(20,165,174)} 1.4876 \times 10^{-1}}\left(fang \text{ } zhang(方丈)\right)$$