Convert juchart to fall

Learn how to convert 1 juchart to fall step by step.

Calculation Breakdown

Set up the equation
$$1.0\left(juchart\right)={\color{rgb(20,165,174)} x}\left(fall\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(square \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(juchart\right) = {\color{rgb(89,182,91)} 3870.01\left(square \text{ } meter\right)} = {\color{rgb(89,182,91)} 3870.01\left(m^{2}\right)}$$
$$\text{Right side: 1.0 } \left(fall\right) = {\color{rgb(125,164,120)} 31.89877441\left(square \text{ } meter\right)} = {\color{rgb(125,164,120)} 31.89877441\left(m^{2}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(juchart\right)={\color{rgb(20,165,174)} x}\left(fall\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 3870.01} \times {\color{rgb(89,182,91)} \left(square \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 31.89877441}} \times {\color{rgb(125,164,120)} \left(square \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 3870.01} \cdot {\color{rgb(89,182,91)} \left(m^{2}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 31.89877441} \cdot {\color{rgb(125,164,120)} \left(m^{2}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 3870.01} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{2}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 31.89877441} \times {\color{rgb(125,164,120)} \cancel{\left(m^{2}\right)}}$$
$$\text{Conversion Equation}$$
$$3870.01 = {\color{rgb(20,165,174)} x} \times 31.89877441$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 31.89877441 = 3870.01$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{31.89877441}\right)$$
$${\color{rgb(20,165,174)} x} \times 31.89877441 \times \dfrac{1.0}{31.89877441} = 3870.01 \times \dfrac{1.0}{31.89877441}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{31.89877441}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{31.89877441}}} = 3870.01 \times \dfrac{1.0}{31.89877441}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{3870.01}{31.89877441}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx121.32158904\approx1.2132 \times 10^{2}$$
$$\text{Conversion Equation}$$
$$1.0\left(juchart\right)\approx{\color{rgb(20,165,174)} 1.2132 \times 10^{2}}\left(fall\right)$$