# Convert kanal to cent

Learn how to convert 1 kanal to cent step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(kanal\right)={\color{rgb(20,165,174)} x}\left(cent\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(square \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(kanal\right) = {\color{rgb(89,182,91)} 505.857\left(square \text{ } meter\right)} = {\color{rgb(89,182,91)} 505.857\left(m^{2}\right)}$$
$$\text{Right side: 1.0 } \left(cent\right) = {\color{rgb(125,164,120)} 40.464830453\left(square \text{ } meter\right)} = {\color{rgb(125,164,120)} 40.464830453\left(m^{2}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(kanal\right)={\color{rgb(20,165,174)} x}\left(cent\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 505.857} \times {\color{rgb(89,182,91)} \left(square \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 40.464830453}} \times {\color{rgb(125,164,120)} \left(square \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 505.857} \cdot {\color{rgb(89,182,91)} \left(m^{2}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 40.464830453} \cdot {\color{rgb(125,164,120)} \left(m^{2}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 505.857} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{2}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 40.464830453} \times {\color{rgb(125,164,120)} \cancel{\left(m^{2}\right)}}$$
$$\text{Conversion Equation}$$
$$505.857 = {\color{rgb(20,165,174)} x} \times 40.464830453$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 40.464830453 = 505.857$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{40.464830453}\right)$$
$${\color{rgb(20,165,174)} x} \times 40.464830453 \times \dfrac{1.0}{40.464830453} = 505.857 \times \dfrac{1.0}{40.464830453}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{40.464830453}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{40.464830453}}} = 505.857 \times \dfrac{1.0}{40.464830453}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{505.857}{40.464830453}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx12.501152095\approx12.5012$$
$$\text{Conversion Equation}$$
$$1.0\left(kanal\right)\approx{\color{rgb(20,165,174)} 12.5012}\left(cent\right)$$