Convert knot / hour to gravity
Learn how to convert
1
knot / hour to
gravity
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(\dfrac{knot}{hour}\right)={\color{rgb(20,165,174)} x}\left(gravity\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(\dfrac{meter}{square \text{ } second}\right)\)
\(\text{Left side: 1.0 } \left(\dfrac{knot}{hour}\right) = {\color{rgb(89,182,91)} \dfrac{50.93}{3.564 \times 10^{5}}\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(89,182,91)} \dfrac{50.93}{3.564 \times 10^{5}}\left(\dfrac{m}{s^{2}}\right)}\)
\(\text{Right side: 1.0 } \left(gravity\right) = {\color{rgb(125,164,120)} 9.80665\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(125,164,120)} 9.80665\left(\dfrac{m}{s^{2}}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(\dfrac{knot}{hour}\right)={\color{rgb(20,165,174)} x}\left(gravity\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{50.93}{3.564 \times 10^{5}}} \times {\color{rgb(89,182,91)} \left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 9.80665}} \times {\color{rgb(125,164,120)} \left(\dfrac{meter}{square \text{ } second}\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} \dfrac{50.93}{3.564 \times 10^{5}}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m}{s^{2}}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 9.80665} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m}{s^{2}}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{50.93}{3.564 \times 10^{5}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m}{s^{2}}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 9.80665} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m}{s^{2}}\right)}}\)
\(\text{Conversion Equation}\)
\(\dfrac{50.93}{3.564 \times 10^{5}} = {\color{rgb(20,165,174)} x} \times 9.80665\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 9.80665 = \dfrac{50.93}{3.564 \times 10^{5}}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{9.80665}\right)\)
\({\color{rgb(20,165,174)} x} \times 9.80665 \times \dfrac{1.0}{9.80665} = \dfrac{50.93}{3.564 \times 10^{5}} \times \dfrac{1.0}{9.80665}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{9.80665}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{9.80665}}} = \dfrac{50.93 \times 1.0}{3.564 \times 10^{5} \times 9.80665}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{50.93}{3.564 \times 10^{5} \times 9.80665}\)
Rewrite equation
\(\dfrac{1.0}{10^{5}}\text{ can be rewritten to }10^{-5}\)
\(\text{Rewrite}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{-5} \times 50.93}{3.564 \times 9.80665}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.0000145719\approx1.4572 \times 10^{-5}\)
\(\text{Conversion Equation}\)
\(1.0\left(\dfrac{knot}{hour}\right)\approx{\color{rgb(20,165,174)} 1.4572 \times 10^{-5}}\left(gravity\right)\)