Convert knot / second to mile / square second
Learn how to convert
1
knot / second to
mile / square second
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(\dfrac{knot}{second}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{mile}{square \text{ } second}\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(\dfrac{meter}{square \text{ } second}\right)\)
\(\text{Left side: 1.0 } \left(\dfrac{knot}{second}\right) = {\color{rgb(89,182,91)} \dfrac{50.93}{99.0}\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(89,182,91)} \dfrac{50.93}{99.0}\left(\dfrac{m}{s^{2}}\right)}\)
\(\text{Right side: 1.0 } \left(\dfrac{mile}{square \text{ } second}\right) = {\color{rgb(125,164,120)} 1609.344\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(125,164,120)} 1609.344\left(\dfrac{m}{s^{2}}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(\dfrac{knot}{second}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{mile}{square \text{ } second}\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{50.93}{99.0}} \times {\color{rgb(89,182,91)} \left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1609.344}} \times {\color{rgb(125,164,120)} \left(\dfrac{meter}{square \text{ } second}\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} \dfrac{50.93}{99.0}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m}{s^{2}}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1609.344} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m}{s^{2}}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} \dfrac{50.93}{99.0}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m}{s^{2}}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1609.344} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m}{s^{2}}\right)}}\)
\(\text{Conversion Equation}\)
\(\dfrac{50.93}{99.0} = {\color{rgb(20,165,174)} x} \times 1609.344\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 1609.344 = \dfrac{50.93}{99.0}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{1609.344}\right)\)
\({\color{rgb(20,165,174)} x} \times 1609.344 \times \dfrac{1.0}{1609.344} = \dfrac{50.93}{99.0} \times \dfrac{1.0}{1609.344}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{1609.344}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{1609.344}}} = \dfrac{50.93 \times 1.0}{99.0 \times 1609.344}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{50.93}{99.0 \times 1609.344}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.000319661\approx3.1966 \times 10^{-4}\)
\(\text{Conversion Equation}\)
\(1.0\left(\dfrac{knot}{second}\right)\approx{\color{rgb(20,165,174)} 3.1966 \times 10^{-4}}\left(\dfrac{mile}{square \text{ } second}\right)\)