Convert lambda to coomb

Learn how to convert 1 lambda to coomb step by step.

Calculation Breakdown

Set up the equation
\(1.0\left(lambda\right)={\color{rgb(20,165,174)} x}\left(coomb\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(cubic \text{ } meter\right)\)
\(\text{Left side: 1.0 } \left(lambda\right) = {\color{rgb(89,182,91)} 10^{-9}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 10^{-9}\left(m^{3}\right)}\)
\(\text{Right side: 1.0 } \left(coomb\right) = {\color{rgb(125,164,120)} 1.4547488 \times 10^{-1}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 1.4547488 \times 10^{-1}\left(m^{3}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(lambda\right)={\color{rgb(20,165,174)} x}\left(coomb\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 10^{-9}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1.4547488 \times 10^{-1}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 10^{-9}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1.4547488 \times 10^{-1}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 10^{-9}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1.4547488 \times 10^{-1}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}\)
\(\text{Conversion Equation}\)
\(10^{-9} = {\color{rgb(20,165,174)} x} \times 1.4547488 \times 10^{-1}\)
Cancel factors on both sides
\(\text{Cancel factors}\)
\({\color{rgb(255,204,153)} \cancelto{10^{-8}}{10^{-9}}} = {\color{rgb(20,165,174)} x} \times 1.4547488 \times {\color{rgb(255,204,153)} \cancel{10^{-1}}}\)
\(\text{Simplify}\)
\(10^{-8} = {\color{rgb(20,165,174)} x} \times 1.4547488\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 1.4547488 = 10^{-8}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{1.4547488}\right)\)
\({\color{rgb(20,165,174)} x} \times 1.4547488 \times \dfrac{1.0}{1.4547488} = 10^{-8} \times \dfrac{1.0}{1.4547488}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{1.4547488}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{1.4547488}}} = 10^{-8} \times \dfrac{1.0}{1.4547488}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{10^{-8}}{1.4547488}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.0000000069\approx6.874 \times 10^{-9}\)
\(\text{Conversion Equation}\)
\(1.0\left(lambda\right)\approx{\color{rgb(20,165,174)} 6.874 \times 10^{-9}}\left(coomb\right)\)

Cookie Policy

PLEASE READ AND ACCEPT OUR COOKIE POLICY.